Nanopores‐templated CNT/PDMS Microcolumn Substrate for the Fabrication of Wearable Triboelectric Nanogenerator Sensors to Monitor Human Pulse and Blood Pressure

Tao Zhang, Chuanjie Yao, Xingyuan Xu, Zhibo Liu, Zhengjie Liu, Tiancheng Sun, Shuang Huang, Xinshuo Huang, Shady Farah, Peng Shi, Hui‐jiuan Chen, Xi Xie
{"title":"Nanopores‐templated CNT/PDMS Microcolumn Substrate for the Fabrication of Wearable Triboelectric Nanogenerator Sensors to Monitor Human Pulse and Blood Pressure","authors":"Tao Zhang, Chuanjie Yao, Xingyuan Xu, Zhibo Liu, Zhengjie Liu, Tiancheng Sun, Shuang Huang, Xinshuo Huang, Shady Farah, Peng Shi, Hui‐jiuan Chen, Xi Xie","doi":"10.1002/admt.202400749","DOIUrl":null,"url":null,"abstract":"Cardiovascular diseases, which cause ≈10 million deaths annually, underscored the importance of effective blood pressure (BP) monitoring. Traditional devices, however, faced limitations that hindered the adoption of continuous monitoring technologies. Flexible triboelectric nanogenerator (TENG) sensors, known for their rapid response, high sensitivity, and cost‐effectiveness, presented a promising alternative. Enhancing their ability to capture weak biological signals can be achieved by optimizing the material's friction coefficient and expanding the effective contact area. In this work, a flexible microcolumn‐based TENG sensor with high sensitivity is developed by fabricating microcolumns of carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites on porous polyethylene terephthalate (PET) membranes using template etching and integrating these with fluorinated ethylene propylene (FEP) film. With the enhancement of microcolumn structure, the sensor possessed high sensitivity and good response, enabling it to effectively and accurately detect subtle physiological changes such as radial pulses and fingertip pulsations, with pulse wave signals highly consistent with the interbeat intervals of electrocardiograms. Leveraging these capabilities, a non‐invasive dynamic BP monitoring system capable of continuous beat‐to‐beat BP monitoring is developed. This advancement enables easier and more effective health monitoring, empowering individuals to better manage their health and improve personalized medical care.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":"37 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400749","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Cardiovascular diseases, which cause ≈10 million deaths annually, underscored the importance of effective blood pressure (BP) monitoring. Traditional devices, however, faced limitations that hindered the adoption of continuous monitoring technologies. Flexible triboelectric nanogenerator (TENG) sensors, known for their rapid response, high sensitivity, and cost‐effectiveness, presented a promising alternative. Enhancing their ability to capture weak biological signals can be achieved by optimizing the material's friction coefficient and expanding the effective contact area. In this work, a flexible microcolumn‐based TENG sensor with high sensitivity is developed by fabricating microcolumns of carbon nanotube/polydimethylsiloxane (CNT/PDMS) composites on porous polyethylene terephthalate (PET) membranes using template etching and integrating these with fluorinated ethylene propylene (FEP) film. With the enhancement of microcolumn structure, the sensor possessed high sensitivity and good response, enabling it to effectively and accurately detect subtle physiological changes such as radial pulses and fingertip pulsations, with pulse wave signals highly consistent with the interbeat intervals of electrocardiograms. Leveraging these capabilities, a non‐invasive dynamic BP monitoring system capable of continuous beat‐to‐beat BP monitoring is developed. This advancement enables easier and more effective health monitoring, empowering individuals to better manage their health and improve personalized medical care.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于制造监测人体脉搏和血压的可穿戴式三电纳米发电机传感器的纳米孔模板 CNT/PDMS 微柱基底
心血管疾病每年导致 1 千万人死亡,因此有效监测血压(BP)显得尤为重要。然而,传统设备的局限性阻碍了连续监测技术的应用。灵活的三电纳米发生器(TENG)传感器以反应迅速、灵敏度高和成本效益高而著称,是一种很有前途的替代方法。通过优化材料的摩擦系数和扩大有效接触面积,可以增强其捕捉微弱生物信号的能力。本研究利用模板蚀刻法在多孔聚对苯二甲酸乙二醇酯(PET)膜上制造碳纳米管/聚二甲基硅氧烷(CNT/PDMS)复合材料微柱,并将其与氟化乙烯丙烯(FEP)薄膜集成,从而开发出一种基于柔性微柱的高灵敏度 TENG 传感器。随着微柱结构的改进,传感器具有了高灵敏度和良好的响应性,能够有效、准确地检测微妙的生理变化,如径向脉动和指尖脉动,其脉搏波信号与心电图的搏动间期高度一致。利用这些功能,我们开发出了一种无创动态血压监测系统,能够进行连续的逐次心跳血压监测。这一进步使健康监测变得更简单、更有效,使个人能够更好地管理自己的健康,改善个性化医疗护理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1