Reconfigurable Metasurface with Multiple Functionalities of Frequency‐Selective Rasorber, Frequency‐Selective Surface, Absorber, and Reflector

Rui Yang, Zhangjie Luo, Jing Cheng Liang, Jun Yan Dai, Qiang Cheng, Tie Jun Cui
{"title":"Reconfigurable Metasurface with Multiple Functionalities of Frequency‐Selective Rasorber, Frequency‐Selective Surface, Absorber, and Reflector","authors":"Rui Yang, Zhangjie Luo, Jing Cheng Liang, Jun Yan Dai, Qiang Cheng, Tie Jun Cui","doi":"10.1002/admt.202400966","DOIUrl":null,"url":null,"abstract":"Multi‐functional metasurfaces have shown great promise in tackling complex electromagnetic issues. Reconfigurable frequency‐selective Rasorbers (FSRs) have recently received growing attraction, but existing designs are constrained in their switchable modes, typically limited to FSR/Absorber or FSR/frequency‐selective surface (FSS). To address this limitation, a new metasurface that integrates four different functioning modes, including FSR, FSS, Absorber, and Reflector is proposed, which can be dynamically switched as demanded. The design is based on the theoretical network model analysis, and its intriguing performances are verified through simulations and experiments both in frequency and time domains. The results show that the FSR and Absorber modes exhibit wide low‐scattering bandwidths with narrow transmission windows that can be turned on or off. These two modes also eliminate the sputtering effect, making it suitable for stealth applications. In contrast, the Reflector mode is efficient in blocking microwaves across a broad spectrum, and a transmission window can be opened in the FSS mode. It is believed this multi‐functional metasurface can serve as a radome to protect against various challenges such as detection, interference, and high‐power invasion.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202400966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Multi‐functional metasurfaces have shown great promise in tackling complex electromagnetic issues. Reconfigurable frequency‐selective Rasorbers (FSRs) have recently received growing attraction, but existing designs are constrained in their switchable modes, typically limited to FSR/Absorber or FSR/frequency‐selective surface (FSS). To address this limitation, a new metasurface that integrates four different functioning modes, including FSR, FSS, Absorber, and Reflector is proposed, which can be dynamically switched as demanded. The design is based on the theoretical network model analysis, and its intriguing performances are verified through simulations and experiments both in frequency and time domains. The results show that the FSR and Absorber modes exhibit wide low‐scattering bandwidths with narrow transmission windows that can be turned on or off. These two modes also eliminate the sputtering effect, making it suitable for stealth applications. In contrast, the Reflector mode is efficient in blocking microwaves across a broad spectrum, and a transmission window can be opened in the FSS mode. It is believed this multi‐functional metasurface can serve as a radome to protect against various challenges such as detection, interference, and high‐power invasion.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
可重构的元表面,具有频率选择吸收器、频率选择表面、吸收器和反射器等多种功能
多功能元表面在解决复杂电磁问题方面大有可为。最近,可重构频率选择吸收器(FSR)受到越来越多的关注,但现有设计在可切换模式方面受到限制,通常仅限于 FSR/吸收器或 FSR/频率选择表面(FSS)。为解决这一局限性,我们提出了一种新型元表面,它集成了四种不同的功能模式,包括 FSR、FSS、吸收器和反射器,可根据需要动态切换。该设计基于理论网络模型分析,并通过频域和时域仿真和实验验证了其引人入胜的性能。结果表明,FSR 和 Absorber 模式具有较宽的低散射带宽和较窄的传输窗口,可以开启或关闭。这两种模式还消除了溅射效应,使其适用于隐形应用。相比之下,反射器模式能有效阻挡宽频谱的微波,而且在 FSS 模式下可以打开传输窗口。相信这种多功能元表面可以作为雷达罩,抵御探测、干扰和大功率入侵等各种挑战。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1