Ultrathin Indium Tin Oxide Accumulation Mode Electrolyte‐Gated Transistors for Bioelectronics

Ludovico Migliaccio, Mehmet Girayhan Say, Gaurav Pathak, Imrich Gablech, Jan Brodský, Mary Jocelyn Donahue, Eric Daniel Głowacki
{"title":"Ultrathin Indium Tin Oxide Accumulation Mode Electrolyte‐Gated Transistors for Bioelectronics","authors":"Ludovico Migliaccio, Mehmet Girayhan Say, Gaurav Pathak, Imrich Gablech, Jan Brodský, Mary Jocelyn Donahue, Eric Daniel Głowacki","doi":"10.1002/admt.202302219","DOIUrl":null,"url":null,"abstract":"Electrolyte‐gated field effect transistors and electrochemical transistors have emerged as powerful components for bioelectronic sensors and biopotential recording devices. A set of parameters must be considered when developing devices to amplify weak electrophysiological signals. These include maximum transconductance values, cut‐off frequencies, and large on/off current ratios. Organic polymer‐based devices have recently dominated the field, especially when considering flexibility as a key factor. Oxide semiconductors may also offer these features, as well as advantages like higher mobility. Herein, flexible, ultrathin, indium tin oxide (ITO) electrolyte‐gated transistors are reported. These accumulation‐mode devices combine n‐type operation with µ<jats:sub>e</jats:sub> = 9.5 cm<jats:sup>2</jats:sup> Vs<jats:sup>−1</jats:sup>, high transconductance (<jats:italic>g</jats:italic><jats:sub>m</jats:sub> = 44 mS), and on/off ratios (10<jats:sup>5</jats:sup>) as well as optically transparent layouts. While oxides are normally considered brittle, mechanically flexible ITO layers are obtained by room temperature deposition of amorphous layers onto parylene C. This process results in low strain, producing devices that survive bending. ITO electrochemically degrades, however, with cycling. To overcome this, the surface is passivated with high dielectric constant inert capping layers of Ta<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> or Ta<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub>/AlN. This greatly improves stability while preserving low gate voltages. Based on their overall performance, ITO‐based EGFETs are promising for bioelectronics.","PeriodicalId":7200,"journal":{"name":"Advanced Materials & Technologies","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials & Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/admt.202302219","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrolyte‐gated field effect transistors and electrochemical transistors have emerged as powerful components for bioelectronic sensors and biopotential recording devices. A set of parameters must be considered when developing devices to amplify weak electrophysiological signals. These include maximum transconductance values, cut‐off frequencies, and large on/off current ratios. Organic polymer‐based devices have recently dominated the field, especially when considering flexibility as a key factor. Oxide semiconductors may also offer these features, as well as advantages like higher mobility. Herein, flexible, ultrathin, indium tin oxide (ITO) electrolyte‐gated transistors are reported. These accumulation‐mode devices combine n‐type operation with µe = 9.5 cm2 Vs−1, high transconductance (gm = 44 mS), and on/off ratios (105) as well as optically transparent layouts. While oxides are normally considered brittle, mechanically flexible ITO layers are obtained by room temperature deposition of amorphous layers onto parylene C. This process results in low strain, producing devices that survive bending. ITO electrochemically degrades, however, with cycling. To overcome this, the surface is passivated with high dielectric constant inert capping layers of Ta2O5 or Ta2O5/AlN. This greatly improves stability while preserving low gate voltages. Based on their overall performance, ITO‐based EGFETs are promising for bioelectronics.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于生物电子学的超薄氧化铟锡蓄积模式电解质门控晶体管
电解质门控场效应晶体管和电化学晶体管已成为生物电子传感器和生物电位记录装置的强大元件。在开发放大微弱电生理信号的设备时,必须考虑一系列参数。这些参数包括最大跨导值、截止频率和较大的导通/截止电流比。基于有机聚合物的器件最近在该领域占据了主导地位,尤其是在考虑灵活性这一关键因素时。氧化物半导体也可以提供这些特性,以及更高的迁移率等优势。本文报告了柔性超薄铟锡氧化物(ITO)电解质门控晶体管。这些积聚模式器件结合了 n 型操作(µe = 9.5 cm2 Vs-1)、高跨导(gm = 44 mS)、导通/截止比(105)以及光学透明布局。氧化物通常被认为是脆性物质,而机械柔性 ITO 层则是通过在对二甲苯 C 上室温沉积非晶层而获得的。然而,ITO 会在循环过程中发生电化学降解。为克服这一问题,可在表面钝化高介电常数的 Ta2O5 或 Ta2O5/AlN 惰性封盖层。这大大提高了稳定性,同时保持了较低的栅极电压。基于其整体性能,基于 ITO 的 EGFET 在生物电子学领域大有可为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Plasma-Generated Luminescent Coatings: Innovations in Thermal Sensitivity and Corrosion Resistance Deep-Learning-Assisted Triboelectric Whisker Sensor Array for Real-Time Motion Sensing of Unmanned Underwater Vehicle Spectral Analysis on Color Detection Sharpness of Animal Vision toward Polychromatic Vision System Evaporated Copper-Based Perovskite Dynamic Memristors for Reservoir Computing Systems Hydrocarbon-Based Ionomer/PTFE-Reinforced Composite Membrane Through Multibar Coating Technique for Durable Fuel Cells
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1