{"title":"Distribution and trend of explosive cyclones over the Southern Ocean and associated atmospheric and oceanic changes during 1980–2020","authors":"Xiaoqi Xu, Jiping Liu, Gang Huang, Yifan Ding","doi":"10.1186/s40562-024-00356-4","DOIUrl":null,"url":null,"abstract":"In this study, we investigate the climatology and trend of explosive cyclones (ECs) over the Southern Ocean (50oS–70oS) during 1980–2020 by combining a method that is most suited for identifying and tracking cyclones in the Southern Ocean and a latest climate reanalysis. On average, approximately 50 ECs are generated annually over the Southern Ocean, with a significant increasing trend of 2.3 per decade during the studying period. This increasing trend is dominated by the trend of strong ECs, particularly in autumn. We analyze the dynamical and thermodynamical effects associated with multiple deepened strong ECs in autumn over an identified key region in the southern Pacific Ocean sector (155oW–170oW, 50oS–65oS), where the density of the initiation of ECs shows the largest increasing trend in autumn. The composite analysis reveals the general patterns and duration of the effects on the atmosphere, ocean, and sea ice associated with multiple ECs in the southern Pacific Ocean. The results indicate that the deepened strong ECs are associated with significant changes in meridional winds, downward longwave radiation, and sensible and latent heat fluxes. These changes lead to cold sea surface temperature anomalies in the northeast of the key region, reaching a maximum 5–7 days after the EC deepening, and the increased sea ice cover south of the key region, peaking 4–5 days after the EC deepening. ","PeriodicalId":48596,"journal":{"name":"Geoscience Letters","volume":"25 1","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geoscience Letters","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1186/s40562-024-00356-4","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we investigate the climatology and trend of explosive cyclones (ECs) over the Southern Ocean (50oS–70oS) during 1980–2020 by combining a method that is most suited for identifying and tracking cyclones in the Southern Ocean and a latest climate reanalysis. On average, approximately 50 ECs are generated annually over the Southern Ocean, with a significant increasing trend of 2.3 per decade during the studying period. This increasing trend is dominated by the trend of strong ECs, particularly in autumn. We analyze the dynamical and thermodynamical effects associated with multiple deepened strong ECs in autumn over an identified key region in the southern Pacific Ocean sector (155oW–170oW, 50oS–65oS), where the density of the initiation of ECs shows the largest increasing trend in autumn. The composite analysis reveals the general patterns and duration of the effects on the atmosphere, ocean, and sea ice associated with multiple ECs in the southern Pacific Ocean. The results indicate that the deepened strong ECs are associated with significant changes in meridional winds, downward longwave radiation, and sensible and latent heat fluxes. These changes lead to cold sea surface temperature anomalies in the northeast of the key region, reaching a maximum 5–7 days after the EC deepening, and the increased sea ice cover south of the key region, peaking 4–5 days after the EC deepening.
Geoscience LettersEarth and Planetary Sciences-General Earth and Planetary Sciences
CiteScore
4.90
自引率
2.50%
发文量
42
审稿时长
25 weeks
期刊介绍:
Geoscience Letters is the official journal of the Asia Oceania Geosciences Society, and a fully open access journal published under the SpringerOpen brand. The journal publishes original, innovative and timely research letter articles and concise reviews on studies of the Earth and its environment, the planetary and space sciences. Contributions reflect the eight scientific sections of the AOGS: Atmospheric Sciences, Biogeosciences, Hydrological Sciences, Interdisciplinary Geosciences, Ocean Sciences, Planetary Sciences, Solar and Terrestrial Sciences, and Solid Earth Sciences. Geoscience Letters focuses on cutting-edge fundamental and applied research in the broad field of the geosciences, including the applications of geoscience research to societal problems. This journal is Open Access, providing rapid electronic publication of high-quality, peer-reviewed scientific contributions.