High-Frequency Options Trading | With Portfolio Optimization

Sid Bhatia
{"title":"High-Frequency Options Trading | With Portfolio Optimization","authors":"Sid Bhatia","doi":"arxiv-2408.08866","DOIUrl":null,"url":null,"abstract":"This paper explores the effectiveness of high-frequency options trading\nstrategies enhanced by advanced portfolio optimization techniques,\ninvestigating their ability to consistently generate positive returns compared\nto traditional long or short positions on options. Utilizing SPY options data\nrecorded in five-minute intervals over a one-month period, we calculate key\nmetrics such as Option Greeks and implied volatility, applying the Binomial\nTree model for American options pricing and the Newton-Raphson algorithm for\nimplied volatility calculation. Investment universes are constructed based on\ncriteria like implied volatility and Greeks, followed by the application of\nvarious portfolio optimization models, including Standard Mean-Variance and\nRobust Methods. Our research finds that while basic long-short strategies\ncentered on implied volatility and Greeks generally underperform, more\nsophisticated strategies incorporating advanced Greeks, such as Vega and Rho,\nalong with dynamic portfolio optimization, show potential in effectively\nnavigating the complexities of the options market. The study highlights the\nimportance of adaptability and responsiveness in dynamic portfolio strategies\nwithin the high-frequency trading environment, particularly under volatile\nmarket conditions. Future research could refine strategy parameters and explore\nless frequently traded options, offering new insights into high-frequency\noptions trading and portfolio management.","PeriodicalId":501478,"journal":{"name":"arXiv - QuantFin - Trading and Market Microstructure","volume":"63 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - QuantFin - Trading and Market Microstructure","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.08866","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper explores the effectiveness of high-frequency options trading strategies enhanced by advanced portfolio optimization techniques, investigating their ability to consistently generate positive returns compared to traditional long or short positions on options. Utilizing SPY options data recorded in five-minute intervals over a one-month period, we calculate key metrics such as Option Greeks and implied volatility, applying the Binomial Tree model for American options pricing and the Newton-Raphson algorithm for implied volatility calculation. Investment universes are constructed based on criteria like implied volatility and Greeks, followed by the application of various portfolio optimization models, including Standard Mean-Variance and Robust Methods. Our research finds that while basic long-short strategies centered on implied volatility and Greeks generally underperform, more sophisticated strategies incorporating advanced Greeks, such as Vega and Rho, along with dynamic portfolio optimization, show potential in effectively navigating the complexities of the options market. The study highlights the importance of adaptability and responsiveness in dynamic portfolio strategies within the high-frequency trading environment, particularly under volatile market conditions. Future research could refine strategy parameters and explore less frequently traded options, offering new insights into high-frequency options trading and portfolio management.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高频期权交易与投资组合优化
本文探讨了通过高级投资组合优化技术增强的高频期权交易策略的有效性,研究了与传统的期权多头或空头头寸相比,高频期权交易策略持续产生正收益的能力。利用一个月内以 5 分钟为间隔记录的 SPY 期权数据,我们计算了期权希腊字母和隐含波动率等关键指标,并应用二叉树模型进行美式期权定价和牛顿-拉斐尔森算法计算隐含波动率。根据隐含波动率和希腊字母等标准构建投资宇宙,然后应用各种投资组合优化模型,包括标准均值-方差法和稳健法。我们的研究发现,虽然以隐含波动率和希腊字母为核心的基本多空策略通常表现不佳,但将 Vega 和 Rho 等高级希腊字母与动态投资组合优化相结合的复杂策略则显示出有效驾驭期权市场复杂性的潜力。这项研究强调了高频交易环境下动态投资组合策略的适应性和响应性的重要性,尤其是在市场波动条件下。未来的研究可以完善策略参数,探索交易频率更低的期权,为高频期权交易和投资组合管理提供新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal position-building strategies in Competition MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model Logarithmic regret in the ergodic Avellaneda-Stoikov market making model A Financial Time Series Denoiser Based on Diffusion Model Simulation of Social Media-Driven Bubble Formation in Financial Markets using an Agent-Based Model with Hierarchical Influence Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1