Lattice Polarity Manipulation of AlN Films on SiC Substrates for N-Polar GaN HEMTs

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-08-27 DOI:10.1021/acs.cgd.4c00585
Yunfei Niu, Gaoqiang Deng, Tao Wang, Haotian Ma, Shixu Yang, Jiaqi Yu, Lidong Zhang, Yusen Wang, Changcai Zuo, Bin Duan, Baolin Zhang, Guoxing Li, Xiaojuan Sun, Dabing Li, Yuantao Zhang
{"title":"Lattice Polarity Manipulation of AlN Films on SiC Substrates for N-Polar GaN HEMTs","authors":"Yunfei Niu, Gaoqiang Deng, Tao Wang, Haotian Ma, Shixu Yang, Jiaqi Yu, Lidong Zhang, Yusen Wang, Changcai Zuo, Bin Duan, Baolin Zhang, Guoxing Li, Xiaojuan Sun, Dabing Li, Yuantao Zhang","doi":"10.1021/acs.cgd.4c00585","DOIUrl":null,"url":null,"abstract":"Realization of nitrogen-polar (N-polar) AlN on SiC is important for the development of high-performance GaN high-electron mobility transistors (HEMTs). However, AlN films grown on SiC substrates are mostly metal-polar, and it is difficult to achieve an N-polar AlN on them. In this work, we manipulated the lattice polarity of AlN grown on SiC by varying the V/III ratio. Our results show that AlN films grown at a low V/III ratio undergo lattice polarity reversal from N-polarity to metal-polarity near the AlN/SiC interface. This occurs because oxygen enrichment occurs in AlN, forming a thin AlON layer close to the interface. Importantly, we suppress the oxygen enrichment and thus the formation of AlON in AlN under a high V/III ratio, i.e., an N-rich growth condition, and finally achieve an N-polar AlN film on SiC. We also find that the threshold V/III ratio that realizes N-polar AlN on SiC without lattice polarity reversal is ∼6000. Furthermore, we prepared a GaN/AlGaN HEMT structure based on the obtained N-polar AlN, and the 2-dimensional electron gas density and mobility at the heterostructure interface are 1.5 × 10<sup>13</sup> cm<sup>–2</sup> and 923 cm<sup>2</sup>/V·s, respectively. This work is expected to promote the development of N-polar GaN HEMTs on SiC.","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.cgd.4c00585","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Realization of nitrogen-polar (N-polar) AlN on SiC is important for the development of high-performance GaN high-electron mobility transistors (HEMTs). However, AlN films grown on SiC substrates are mostly metal-polar, and it is difficult to achieve an N-polar AlN on them. In this work, we manipulated the lattice polarity of AlN grown on SiC by varying the V/III ratio. Our results show that AlN films grown at a low V/III ratio undergo lattice polarity reversal from N-polarity to metal-polarity near the AlN/SiC interface. This occurs because oxygen enrichment occurs in AlN, forming a thin AlON layer close to the interface. Importantly, we suppress the oxygen enrichment and thus the formation of AlON in AlN under a high V/III ratio, i.e., an N-rich growth condition, and finally achieve an N-polar AlN film on SiC. We also find that the threshold V/III ratio that realizes N-polar AlN on SiC without lattice polarity reversal is ∼6000. Furthermore, we prepared a GaN/AlGaN HEMT structure based on the obtained N-polar AlN, and the 2-dimensional electron gas density and mobility at the heterostructure interface are 1.5 × 1013 cm–2 and 923 cm2/V·s, respectively. This work is expected to promote the development of N-polar GaN HEMTs on SiC.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用晶格极性操纵碳化硅基板上的氮化铝薄膜,制造 N 极氮化镓 HEMT
在碳化硅(SiC)上实现氮极性(N-polar)AlN 对于开发高性能氮化镓高电子迁移率晶体管(HEMT)非常重要。然而,在碳化硅衬底上生长的 AlN 薄膜大多是金属极性的,因此很难在其上实现氮极性 AlN。在这项工作中,我们通过改变 V/III 的比例来操纵在 SiC 上生长的 AlN 的晶格极性。我们的研究结果表明,以低 V/III 比率生长的 AlN 薄膜在 AlN/SiC 界面附近会发生晶格极性反转,从 N 极性转变为金属极性。出现这种情况的原因是 AlN 中出现了氧富集,在靠近界面的地方形成了一层薄薄的 AlON 层。重要的是,在高 V/III 比(即富含 N 的生长条件)下,我们抑制了 AlN 中的氧富集,从而抑制了 AlON 的形成,最终在 SiC 上形成了 N 极 AlN 薄膜。我们还发现,在 SiC 上实现无晶格极性反转的 N 极 AlN 的阈值 V/III 比为 ∼ 6000。此外,我们基于所获得的 N 极 AlN 制备了 GaN/AlGaN HEMT 结构,异质结构界面上的二维电子气体密度和迁移率分别为 1.5 × 1013 cm-2 和 923 cm2/V-s。这项工作有望推动氮化镓 HEMT 在碳化硅上的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Photocatalytic Synthesis of Au Nanoplates Ion Site Substitution in a Sulfonylcalix[4]arene-Supported Ln8 (Ln = Tb and Eu) Coordination Wheel with Tunable Luminescence Functionalized Covalent Triazine Framework (CTF) for Catalytic CO2 Fixation and Synthesis of Value-Added Chemicals Flexible Ligands Constructed Metal–Organic Frameworks as Visual Test Paper for Fluorescent Detection Insights into the Illuminating World of Nanocrystalline Materials: Structure–Property Relationships in Precise Nanocrystals to Ensembles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1