Room Temperature Synthesis of Tellurium by Solution Atomic Layer Deposition

IF 3.2 2区 化学 Q2 CHEMISTRY, MULTIDISCIPLINARY Crystal Growth & Design Pub Date : 2024-09-10 DOI:10.1021/acs.cgd.4c00987
Jessica Willkommen, Amin Bahrami, Nicolas Perez Rodriguez, Angelika Wrzesinska-Lashkova, Yana Vaynzof, Kornelius Nielsch, Sebastian Lehmann
{"title":"Room Temperature Synthesis of Tellurium by Solution Atomic Layer Deposition","authors":"Jessica Willkommen, Amin Bahrami, Nicolas Perez Rodriguez, Angelika Wrzesinska-Lashkova, Yana Vaynzof, Kornelius Nielsch, Sebastian Lehmann","doi":"10.1021/acs.cgd.4c00987","DOIUrl":null,"url":null,"abstract":"This study demonstrates the deposition of tellurium (Te) on silicon/silicon nitride substrates using solution atomic layer deposition (sALD) at ambient temperature. The process employs tellurium tetrachloride (TeCl<sub>4</sub>) and bis(triethylsilyl)-telluride ((TES)<sub>2</sub>Te) as precursors, with toluene as the solvent. Growth parameters were optimized through systematic variation of the pulse and purge times. Morphological characterization via scanning and transmission electron microscopy revealed needle-like crystallites, while X-ray diffractometry confirmed the crystalline nature of the deposited Te. Increasing the number of deposition cycles resulted in larger Te crystallites and enhanced substrate surface coverage. A thin amorphous carbon shell surrounding the crystallites and carbon inclusions was observed, likely originating from the organic solvent. X-ray photoemission spectroscopy analysis indicated high-purity Te films with minimal surface oxidation. The small chlorine signal suggested a near-complete precursor reaction and the efficient purging of byproducts. This novel sALD approach presents a promising method for depositing Te on various surfaces under mild conditions.","PeriodicalId":34,"journal":{"name":"Crystal Growth & Design","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Crystal Growth & Design","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.cgd.4c00987","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This study demonstrates the deposition of tellurium (Te) on silicon/silicon nitride substrates using solution atomic layer deposition (sALD) at ambient temperature. The process employs tellurium tetrachloride (TeCl4) and bis(triethylsilyl)-telluride ((TES)2Te) as precursors, with toluene as the solvent. Growth parameters were optimized through systematic variation of the pulse and purge times. Morphological characterization via scanning and transmission electron microscopy revealed needle-like crystallites, while X-ray diffractometry confirmed the crystalline nature of the deposited Te. Increasing the number of deposition cycles resulted in larger Te crystallites and enhanced substrate surface coverage. A thin amorphous carbon shell surrounding the crystallites and carbon inclusions was observed, likely originating from the organic solvent. X-ray photoemission spectroscopy analysis indicated high-purity Te films with minimal surface oxidation. The small chlorine signal suggested a near-complete precursor reaction and the efficient purging of byproducts. This novel sALD approach presents a promising method for depositing Te on various surfaces under mild conditions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
溶液原子层沉积法室温合成碲
本研究展示了在常温下利用溶液原子层沉积 (sALD) 在硅/氮化硅基底上沉积碲 (Te)。该工艺采用四氯化碲(TeCl4)和双(三乙基硅基)-碲((TES)2Te)作为前驱体,甲苯作为溶剂。通过系统地改变脉冲和吹扫时间,对生长参数进行了优化。通过扫描和透射电子显微镜进行的形态表征显示出针状结晶,而 X 射线衍射仪则证实了沉积碲的结晶性质。增加沉积周期的次数可获得更大的碲晶体,并提高基底表面覆盖率。在晶体和碳夹杂物周围观察到一层薄薄的无定形碳壳,很可能来自有机溶剂。X 射线光发射光谱分析表明,碲薄膜纯度很高,表面氧化极少。较小的氯信号表明前驱体反应接近完全,副产物得到了有效净化。这种新型 sALD 方法为在温和条件下在各种表面沉积 Te 提供了一种可行的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Crystal Growth & Design
Crystal Growth & Design 化学-材料科学:综合
CiteScore
6.30
自引率
10.50%
发文量
650
审稿时长
1.9 months
期刊介绍: The aim of Crystal Growth & Design is to stimulate crossfertilization of knowledge among scientists and engineers working in the fields of crystal growth, crystal engineering, and the industrial application of crystalline materials. Crystal Growth & Design publishes theoretical and experimental studies of the physical, chemical, and biological phenomena and processes related to the design, growth, and application of crystalline materials. Synergistic approaches originating from different disciplines and technologies and integrating the fields of crystal growth, crystal engineering, intermolecular interactions, and industrial application are encouraged.
期刊最新文献
Photocatalytic Synthesis of Au Nanoplates Ion Site Substitution in a Sulfonylcalix[4]arene-Supported Ln8 (Ln = Tb and Eu) Coordination Wheel with Tunable Luminescence Functionalized Covalent Triazine Framework (CTF) for Catalytic CO2 Fixation and Synthesis of Value-Added Chemicals Flexible Ligands Constructed Metal–Organic Frameworks as Visual Test Paper for Fluorescent Detection Insights into the Illuminating World of Nanocrystalline Materials: Structure–Property Relationships in Precise Nanocrystals to Ensembles
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1