Marianna Biscarini;Roberto Nebuloni;Laura Dossi;Saverio Di Fabio;Paolo Scaccia;Tiziana Cherubini;Carlo Riva;Lorenzo Luini
{"title":"A Model-Chain to Generate Q-/V-Band Attenuation Time Series From Short-Term Numerical Weather Predictions at Continental Scale","authors":"Marianna Biscarini;Roberto Nebuloni;Laura Dossi;Saverio Di Fabio;Paolo Scaccia;Tiziana Cherubini;Carlo Riva;Lorenzo Luini","doi":"10.1109/TAP.2024.3455567","DOIUrl":null,"url":null,"abstract":"To minimize the impact of propagation impairments occurring at Ka-band and beyond, satellite communication (SatCom) systems operating at such high frequencies require the implementation of adaptive fade mitigation techniques (FMTs). As beacon measurements are rarely available (especially with the spatial distribution and the time resolution required by FMTs), time-series generators represent a key tool for the design stage of such systems. This article proposes a novel three-module model chain to generate a time series of rain attenuation. The first module is a numerical weather prediction (NWP) model that forecasts meteorological parameters across a continental grid with \n<inline-formula> <tex-math>$9\\times 9$ </tex-math></inline-formula>\n km and 15-min resolution in space and time, respectively. The NWP model outputs feed a radio propagation model, which produces time series of the attenuation components (gas, clouds, and rain). Finally, the rain attenuation is generated ex-novo at a 1-s sampling rate, by taking advantage of the multisite time-series synthesizer (MTS). Each step of the process is validated against measurements covering a 28-day period.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"72 11","pages":"8696-8708"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10679676","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10679676/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
To minimize the impact of propagation impairments occurring at Ka-band and beyond, satellite communication (SatCom) systems operating at such high frequencies require the implementation of adaptive fade mitigation techniques (FMTs). As beacon measurements are rarely available (especially with the spatial distribution and the time resolution required by FMTs), time-series generators represent a key tool for the design stage of such systems. This article proposes a novel three-module model chain to generate a time series of rain attenuation. The first module is a numerical weather prediction (NWP) model that forecasts meteorological parameters across a continental grid with
$9\times 9$
km and 15-min resolution in space and time, respectively. The NWP model outputs feed a radio propagation model, which produces time series of the attenuation components (gas, clouds, and rain). Finally, the rain attenuation is generated ex-novo at a 1-s sampling rate, by taking advantage of the multisite time-series synthesizer (MTS). Each step of the process is validated against measurements covering a 28-day period.
期刊介绍:
IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques