An Artificial-Neural-Network-Based Efficient Beamforming Synthesis Method and Its Application to Flat-Top Beamformed Compressed High-Order-Mode Dipoles

IF 4.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Antennas and Propagation Pub Date : 2024-09-02 DOI:10.1109/TAP.2024.3450304
Yu Luo;Shuaijie Duan;Zhi Ning Chen;Ningning Yan;Wenxing An;Kaixue Ma
{"title":"An Artificial-Neural-Network-Based Efficient Beamforming Synthesis Method and Its Application to Flat-Top Beamformed Compressed High-Order-Mode Dipoles","authors":"Yu Luo;Shuaijie Duan;Zhi Ning Chen;Ningning Yan;Wenxing An;Kaixue Ma","doi":"10.1109/TAP.2024.3450304","DOIUrl":null,"url":null,"abstract":"An efficient beamforming synthesis method is proposed for high-order-mode dipoles using artificial neural networks (ANNs). Beamformed radiation pattern features and antenna parameters are set as the inputs and outputs of an ANN model to expedite antenna design by reducing the complexity and training volume of ANN. The flat-top beamforming of compressed high-order-mode dipoles is used as an example to validate the proposed beamforming synthesis method based on a proposed continuous current source over a high-order-mode dipole with the current distribution determined by designed compression coefficients. Then, the desired compression coefficients are implemented using a meandered structure. The numerical results indicate that the ANN can achieve a training loss of \n<inline-formula> <tex-math>$1.16\\times 10^{-4}$ </tex-math></inline-formula>\n and a testing loss of \n<inline-formula> <tex-math>$1.12\\times 10^{-4}$ </tex-math></inline-formula>\n, effectively accelerating the antenna design process. Lastly, a seventh-order-mode printed dipole is designed, simulated, and measured.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"72 10","pages":"7606-7614"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663335/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

An efficient beamforming synthesis method is proposed for high-order-mode dipoles using artificial neural networks (ANNs). Beamformed radiation pattern features and antenna parameters are set as the inputs and outputs of an ANN model to expedite antenna design by reducing the complexity and training volume of ANN. The flat-top beamforming of compressed high-order-mode dipoles is used as an example to validate the proposed beamforming synthesis method based on a proposed continuous current source over a high-order-mode dipole with the current distribution determined by designed compression coefficients. Then, the desired compression coefficients are implemented using a meandered structure. The numerical results indicate that the ANN can achieve a training loss of $1.16\times 10^{-4}$ and a testing loss of $1.12\times 10^{-4}$ , effectively accelerating the antenna design process. Lastly, a seventh-order-mode printed dipole is designed, simulated, and measured.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于人工神经网络的高效波束成形合成方法及其在平顶波束成形压缩高阶模式偶极子中的应用
利用人工神经网络(ANN)为高阶模式偶极子提出了一种高效的波束成形合成方法。将波束成形辐射模式特征和天线参数设置为人工神经网络模型的输入和输出,通过降低人工神经网络的复杂性和训练量来加快天线设计。以压缩高阶模式偶极子的平顶波束成形为例,验证了所提出的波束成形合成方法,该方法基于高阶模式偶极子上的连续电流源,电流分布由设计的压缩系数决定。然后,利用蜿蜒结构实现所需的压缩系数。数值结果表明,ANN 的训练损耗为 10^{-4}$ 的 1.16 倍,测试损耗为 10^{-4}$ 的 1.12 倍,有效加速了天线设计过程。最后,设计、模拟和测量了一个七阶模式印刷偶极子。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
期刊最新文献
Table of Contents IEEE Transactions on Antennas and Propagation Publication Information IEEE Transactions on Antennas and Propagation Information for Authors Institutional Listings Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1