Macro Basis Function Methods With Multilevel DCA Acceleration for Antenna Array Analysis

IF 4.6 1区 计算机科学 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC IEEE Transactions on Antennas and Propagation Pub Date : 2024-09-02 DOI:10.1109/TAP.2024.3450317
Keshav Sewraj;Matthys M. Botha
{"title":"Macro Basis Function Methods With Multilevel DCA Acceleration for Antenna Array Analysis","authors":"Keshav Sewraj;Matthys M. Botha","doi":"10.1109/TAP.2024.3450317","DOIUrl":null,"url":null,"abstract":"The efficient method of moments (MoM) analysis of very large antenna arrays of disjoint elements, using macro basis function (MBF) schemes, is considered. Directional cross approximation (DCA), which is a nested, multilevel, algebraic, low-rank factorization scheme suitable for electrically large structures, is used for fast reduced MBF matrix setup and matrix-vector products (MVPs). A DCA far-field sampling strategy suitable for planar arrays is employed. Optimal log-linear DCA memory scaling is demonstrated. The performance of static MBF formulations is investigated, namely, the characteristic basis function method (CBFM) and windowed MBF (WMBF) schemes, which establish MBFs once as a preprocessing step. Static MBF approximation errors are difficult to control. Dynamic MBFs are iteratively refined to obtain a solution within user-specified error tolerance. Residual-driven (RD) CBFM, RD WMBFs, RD Krylov subspace MBFs, and block-Jacobi MBFs (both original and RD) are considered. Effective solution accuracy control is demonstrated. Runtime of all schemes is studied. Given optimal DCA acceleration, the results give a realistic view of relative efficiencies. Static MBFs are much less efficient than dynamic ones. Among dynamic schemes, RD static MBFs are less efficient. Krylov MBFs can perform better than the original block-Jacobi scheme, but the latter requires no parameter choice. RD block-Jacobi and a hybrid Krylov-Jacobi (K-J) scheme sometimes outperform all others.","PeriodicalId":13102,"journal":{"name":"IEEE Transactions on Antennas and Propagation","volume":"72 11","pages":"8621-8634"},"PeriodicalIF":4.6000,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Antennas and Propagation","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10663354/","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

The efficient method of moments (MoM) analysis of very large antenna arrays of disjoint elements, using macro basis function (MBF) schemes, is considered. Directional cross approximation (DCA), which is a nested, multilevel, algebraic, low-rank factorization scheme suitable for electrically large structures, is used for fast reduced MBF matrix setup and matrix-vector products (MVPs). A DCA far-field sampling strategy suitable for planar arrays is employed. Optimal log-linear DCA memory scaling is demonstrated. The performance of static MBF formulations is investigated, namely, the characteristic basis function method (CBFM) and windowed MBF (WMBF) schemes, which establish MBFs once as a preprocessing step. Static MBF approximation errors are difficult to control. Dynamic MBFs are iteratively refined to obtain a solution within user-specified error tolerance. Residual-driven (RD) CBFM, RD WMBFs, RD Krylov subspace MBFs, and block-Jacobi MBFs (both original and RD) are considered. Effective solution accuracy control is demonstrated. Runtime of all schemes is studied. Given optimal DCA acceleration, the results give a realistic view of relative efficiencies. Static MBFs are much less efficient than dynamic ones. Among dynamic schemes, RD static MBFs are less efficient. Krylov MBFs can perform better than the original block-Jacobi scheme, but the latter requires no parameter choice. RD block-Jacobi and a hybrid Krylov-Jacobi (K-J) scheme sometimes outperform all others.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
采用多级 DCA 加速的宏基函数方法用于天线阵列分析
研究考虑了使用宏基函数(MBF)方案对超大型离散元素天线阵列进行高效的矩量法(MoM)分析。定向交叉近似(DCA)是一种嵌套、多级、代数、低秩因式分解方案,适用于大型电气结构,用于快速简化 MBF 矩阵设置和矩阵矢量乘积(MVP)。采用了适合平面阵列的 DCA 远场采样策略。演示了最佳对数线性 DCA 内存缩放。研究了静态 MBF 方案的性能,即特征基函数法 (CBFM) 和带窗 MBF (WMBF) 方案,这两种方案作为预处理步骤建立一次 MBF。静态 MBF 近似误差难以控制。动态 MBF 经过迭代改进,以获得用户指定误差容限内的解决方案。我们考虑了残差驱动(RD)CBFM、RD WMBF、RD Krylov 子空间 MBF 和块-Jacobi MBF(包括原始 MBF 和 RD MBF)。演示了有效的求解精度控制。研究了所有方案的运行时间。考虑到最佳 DCA 加速,结果给出了相对效率的现实观点。静态 MBF 的效率远远低于动态 MBF。在动态方案中,RD 静态 MBF 的效率较低。Krylov MBF 的性能优于原始的 block-Jacobi 方案,但后者无需选择参数。RD 块-Jacobi 和混合 Krylov-Jacobi (K-J) 方案的性能有时优于所有其他方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
10.40
自引率
28.10%
发文量
968
审稿时长
4.7 months
期刊介绍: IEEE Transactions on Antennas and Propagation includes theoretical and experimental advances in antennas, including design and development, and in the propagation of electromagnetic waves, including scattering, diffraction, and interaction with continuous media; and applications pertaining to antennas and propagation, such as remote sensing, applied optics, and millimeter and submillimeter wave techniques
期刊最新文献
Table of Contents IEEE Transactions on Antennas and Propagation Publication Information IEEE Transactions on Antennas and Propagation Information for Authors Institutional Listings Table of Contents
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1