{"title":"Hydraulic Conductivity of Binary Granular Systems: Does it Depend on Overall Regularity and Intergranular Porosity?","authors":"Abdellah Cherif Taiba, Youcef Mahmoudi, Hamou Azaiez, Mostefa Belkhatir","doi":"10.1007/s40996-024-01599-z","DOIUrl":null,"url":null,"abstract":"<p>This study focuses on developing new expressions correlating hydraulic conductivity (K) in binary mixed soils with intergranular porosity (<i>n</i><sub><i>eq</i></sub>) and overall regularity (OR). Through a series of constant head hydraulic conductivity tests on three types of coarse-grained soils, varying proportions of low plastic river silt (S<sub>p</sub> = 0% to 40%) were mixed with sand. Initially, sand-river silt binary assemblies were prepared with an initial relative index (I<sub>d</sub> = 0.92). Analysis reveals significant influences of particle shape factors on hydraulic conductivity. The study elucidates the relevance of overall regularity (OR), shape factor (SF), and intergranular porosity (<i>n</i><sub><i>eq</i></sub>), introducing two novel parameters: [(OR)<sup>0.5</sup> × SF × <i>n</i><sub><i>eq</i></sub>] and [(1 + EG)/(SD)<sup>5</sup> × (<i>n</i><sub><i>eq</i></sub>)<sup>0.02</sup>]. The experimental findings highlight the robust predictive capability of these multi-variable expressions in systematically determining hydraulic conductivity. Such insights hold particular significance in geotechnical engineering, especially in understanding hydraulic responses within binary granular systems. Ultimately, this research contributes to a more profound comprehension of soil behavior and carries substantial practical implications for a wide array of engineering applications, facilitating more accurate predictions and design considerations in geotechnical projects.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01599-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
This study focuses on developing new expressions correlating hydraulic conductivity (K) in binary mixed soils with intergranular porosity (neq) and overall regularity (OR). Through a series of constant head hydraulic conductivity tests on three types of coarse-grained soils, varying proportions of low plastic river silt (Sp = 0% to 40%) were mixed with sand. Initially, sand-river silt binary assemblies were prepared with an initial relative index (Id = 0.92). Analysis reveals significant influences of particle shape factors on hydraulic conductivity. The study elucidates the relevance of overall regularity (OR), shape factor (SF), and intergranular porosity (neq), introducing two novel parameters: [(OR)0.5 × SF × neq] and [(1 + EG)/(SD)5 × (neq)0.02]. The experimental findings highlight the robust predictive capability of these multi-variable expressions in systematically determining hydraulic conductivity. Such insights hold particular significance in geotechnical engineering, especially in understanding hydraulic responses within binary granular systems. Ultimately, this research contributes to a more profound comprehension of soil behavior and carries substantial practical implications for a wide array of engineering applications, facilitating more accurate predictions and design considerations in geotechnical projects.
期刊介绍:
The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering
and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following:
-Structural engineering-
Earthquake engineering-
Concrete engineering-
Construction management-
Steel structures-
Engineering mechanics-
Water resources engineering-
Hydraulic engineering-
Hydraulic structures-
Environmental engineering-
Soil mechanics-
Foundation engineering-
Geotechnical engineering-
Transportation engineering-
Surveying and geomatics.