A Combined Method for the Stability Characteristics of FG Porous Nanobeams Embedded in an Elastic Matrix

IF 1.7 4区 工程技术 Q3 ENGINEERING, CIVIL Iranian Journal of Science and Technology, Transactions of Civil Engineering Pub Date : 2024-08-19 DOI:10.1007/s40996-024-01521-7
Büşra Uzun, Mustafa Özgür Yaylı
{"title":"A Combined Method for the Stability Characteristics of FG Porous Nanobeams Embedded in an Elastic Matrix","authors":"Büşra Uzun, Mustafa Özgür Yaylı","doi":"10.1007/s40996-024-01521-7","DOIUrl":null,"url":null,"abstract":"<p>The investigation conducted in this work aims to analyse the stability response of functionally graded restrained nanobeams with four different porosity distributions and embedded in an elastic matrix. To take into concern the size effects, Eringen’s nonlocal elasticity is employed as a higher-order continuum theory. The material properties of the functionally graded porous nano-sized beams with deformable boundaries are changed gradually in spatial coordinates through the power-law model which covers four kinds of porosity distributions. A system of linear equations consists of infinite power series for an embedded functionally graded porous nanobeam under axial point loads obtained from Fourier trigonometric series and Stokes’ transformation is solved by an eigenvalue problem which satisfies rigid or deformable supporting conditions including classical boundary conditions such as simply supported, clamped–clamped and clamped-simply supported. In this study, Stokes' transform based solutions that can calculate the buckling loads of elastically restrained functionally graded nonlocal beams on Winkler foundation for four different pore types are presented for the first time. Analytical results are obtained for various porosity distributions and boundary conditions to reveal the effects of nonlocality, Winkler foundation and power-law index on the lateral buckling behavior of functionally graded nanoscale nanobeams.</p>","PeriodicalId":14550,"journal":{"name":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","volume":"2 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iranian Journal of Science and Technology, Transactions of Civil Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s40996-024-01521-7","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0

Abstract

The investigation conducted in this work aims to analyse the stability response of functionally graded restrained nanobeams with four different porosity distributions and embedded in an elastic matrix. To take into concern the size effects, Eringen’s nonlocal elasticity is employed as a higher-order continuum theory. The material properties of the functionally graded porous nano-sized beams with deformable boundaries are changed gradually in spatial coordinates through the power-law model which covers four kinds of porosity distributions. A system of linear equations consists of infinite power series for an embedded functionally graded porous nanobeam under axial point loads obtained from Fourier trigonometric series and Stokes’ transformation is solved by an eigenvalue problem which satisfies rigid or deformable supporting conditions including classical boundary conditions such as simply supported, clamped–clamped and clamped-simply supported. In this study, Stokes' transform based solutions that can calculate the buckling loads of elastically restrained functionally graded nonlocal beams on Winkler foundation for four different pore types are presented for the first time. Analytical results are obtained for various porosity distributions and boundary conditions to reveal the effects of nonlocality, Winkler foundation and power-law index on the lateral buckling behavior of functionally graded nanoscale nanobeams.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
嵌入弹性基质中的 FG 多孔纳米梁稳定性特征的组合方法
这项研究旨在分析具有四种不同孔隙率分布并嵌入弹性基体的功能分级约束纳米梁的稳定性响应。为了考虑尺寸效应,采用了 Eringen 的非局部弹性作为高阶连续理论。通过涵盖四种孔隙率分布的幂律模型,具有可变形边界的功能分级多孔纳米梁的材料特性在空间坐标上逐渐发生变化。嵌入式功能分层多孔纳米梁在轴向点载荷作用下的线性方程组由傅里叶三角级数得到的无穷幂级数组成,斯托克斯变换通过特征值问题求解,该特征值问题满足刚性或可变形支撑条件,包括简单支撑、夹紧-夹紧和夹紧-简单支撑等经典边界条件。本研究首次提出了基于斯托克斯变换的解决方案,可以计算四种不同孔隙类型的温克勒地基上弹性约束功能分级非局部梁的屈曲载荷。在不同孔隙率分布和边界条件下得到的分析结果揭示了非局部性、温克勒地基和幂律指数对功能分级纳米梁横向屈曲行为的影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
3.30
自引率
11.80%
发文量
203
期刊介绍: The aim of the Iranian Journal of Science and Technology is to foster the growth of scientific research among Iranian engineers and scientists and to provide a medium by means of which the fruits of these researches may be brought to the attention of the world’s civil Engineering communities. This transaction focuses on all aspects of Civil Engineering and will accept the original research contributions (previously unpublished) from all areas of established engineering disciplines. The papers may be theoretical, experimental or both. The journal publishes original papers within the broad field of civil engineering which include, but are not limited to, the following: -Structural engineering- Earthquake engineering- Concrete engineering- Construction management- Steel structures- Engineering mechanics- Water resources engineering- Hydraulic engineering- Hydraulic structures- Environmental engineering- Soil mechanics- Foundation engineering- Geotechnical engineering- Transportation engineering- Surveying and geomatics.
期刊最新文献
Coupled Rainfall-Runoff and Hydrodynamic Modeling using MIKE + for Flood Simulation Mechanical and Microstructural Characteristics of Fly Ash-Nano-Silica Composites Enhancement of the Mechanical Characteristics of a Green Mortar Under Extreme Conditions: Experimental Study and Optimization Analysis A Case Study on the Effect of Multiple Earthquakes on Mid-rise RC Buildings with Mass and Stiffness Irregularity in Height Incremental Plastic Analysis of Confined Concrete Considering the Variation of Elastic Moduli
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1