{"title":"Hypomethylation in promoters of PGC-1α involved in exercise-driven skeletal muscular alterations in old age","authors":"Qiaowei Li, Qin Liu, Zhong Lin, Wenwen Lin, Feng Huang, Pengli Zhu","doi":"10.1515/biol-2022-0959","DOIUrl":null,"url":null,"abstract":"Exercise training can significantly improve skeletal muscle mitochondrial function and has been proven to be highly relevant to alterations in skeletal muscle DNA methylation. However, it remains unclear whether late-in-life exercise has an effect on promoter methylation of PGC-1α, a key regulator of mitochondrial biogenesis. Here we employed two distinct exercise modalities, constant medium intensity exercise training (CMIT) and high-intensity interval exercise training (HIIT), to investigate their impacts on PGC-1α expression and methylation regulation in skeletal muscle of aged mice. The results revealed a notable decrease in PGC-1α expression in skeletal muscle of aged mice, accompanied by elevated methylation levels of the PGC-1α promoter, and increased DNA methyltransferase (DNMT) protein expressions. However, both forms of exercise training significantly corrected PGC-1α epigenetic changes, increased PGC-1α expression, and ameliorated skeletal muscle reduction. Furthermore, exercise training led to elevated expression of proteins related to mitochondrial biogenesis and energy metabolism in skeletal muscle, improving mitochondrial structure and function. In conclusion, late-in-life exercise improved skeletal muscle function, morphology, and mitochondria biogenesis, which may be associated with hypomethylation in promoters of PGC-1α and increased content of skeletal muscle PGC-1α. Notably, there was no clear difference between HIIT and CMIT in PGC-1α expression and skeletal muscle function.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1515/biol-2022-0959","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Exercise training can significantly improve skeletal muscle mitochondrial function and has been proven to be highly relevant to alterations in skeletal muscle DNA methylation. However, it remains unclear whether late-in-life exercise has an effect on promoter methylation of PGC-1α, a key regulator of mitochondrial biogenesis. Here we employed two distinct exercise modalities, constant medium intensity exercise training (CMIT) and high-intensity interval exercise training (HIIT), to investigate their impacts on PGC-1α expression and methylation regulation in skeletal muscle of aged mice. The results revealed a notable decrease in PGC-1α expression in skeletal muscle of aged mice, accompanied by elevated methylation levels of the PGC-1α promoter, and increased DNA methyltransferase (DNMT) protein expressions. However, both forms of exercise training significantly corrected PGC-1α epigenetic changes, increased PGC-1α expression, and ameliorated skeletal muscle reduction. Furthermore, exercise training led to elevated expression of proteins related to mitochondrial biogenesis and energy metabolism in skeletal muscle, improving mitochondrial structure and function. In conclusion, late-in-life exercise improved skeletal muscle function, morphology, and mitochondria biogenesis, which may be associated with hypomethylation in promoters of PGC-1α and increased content of skeletal muscle PGC-1α. Notably, there was no clear difference between HIIT and CMIT in PGC-1α expression and skeletal muscle function.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.