Dual‐noise autoencoder combining pseudo‐labels and consistency regularization for process fault classification

Xiaoping Guo, Qingyu Guo, Yuan Li
{"title":"Dual‐noise autoencoder combining pseudo‐labels and consistency regularization for process fault classification","authors":"Xiaoping Guo, Qingyu Guo, Yuan Li","doi":"10.1002/cjce.25478","DOIUrl":null,"url":null,"abstract":"In the classification of industrial process faults, the collected process fault data has the problem of having more irrelevant fault information, limited labels, and a significant impact of noise, which affects the prediction accuracy of the classification model. To address these problems, this paper proposes a semi‐supervised dual‐noise autoencoder method that integrates pseudo‐labels and consistency regularization (PR‐SNAE). Based on normal samples, the differences between faulty samples and normal samples are enhanced through dissimilarity analysis. Two types of noise are introduced into the enhanced samples to improve the robustness of the model. A stacked supervised autoencoder (SSAE) network is trained using a small amount of labelled data. The deep feature information is extracted to establish a preliminary fault classification model. Pseudo‐labels are generated for unlabelled samples to overcome the problem of insufficient labels for fault data. In the adjustment stage of the classification model, a loss function that integrates pseudo‐labels and consistency regularization is proposed to prevent overfitting and poor robustness of the model. Simulation experiments were conducted on the Tennessee Eastman (TE) benchmark process and three‐phase flow process, and the results verified the effectiveness of the proposed method.","PeriodicalId":501204,"journal":{"name":"The Canadian Journal of Chemical Engineering","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Canadian Journal of Chemical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/cjce.25478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

In the classification of industrial process faults, the collected process fault data has the problem of having more irrelevant fault information, limited labels, and a significant impact of noise, which affects the prediction accuracy of the classification model. To address these problems, this paper proposes a semi‐supervised dual‐noise autoencoder method that integrates pseudo‐labels and consistency regularization (PR‐SNAE). Based on normal samples, the differences between faulty samples and normal samples are enhanced through dissimilarity analysis. Two types of noise are introduced into the enhanced samples to improve the robustness of the model. A stacked supervised autoencoder (SSAE) network is trained using a small amount of labelled data. The deep feature information is extracted to establish a preliminary fault classification model. Pseudo‐labels are generated for unlabelled samples to overcome the problem of insufficient labels for fault data. In the adjustment stage of the classification model, a loss function that integrates pseudo‐labels and consistency regularization is proposed to prevent overfitting and poor robustness of the model. Simulation experiments were conducted on the Tennessee Eastman (TE) benchmark process and three‐phase flow process, and the results verified the effectiveness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
结合伪标签和一致性正则化的双噪声自动编码器用于过程故障分类
在工业过程故障分类中,采集到的过程故障数据存在无关故障信息较多、标签有限、噪声影响较大等问题,影响了分类模型的预测精度。针对这些问题,本文提出了一种集成伪标签和一致性正则化(PR-SNAE)的半监督双噪声自动编码器方法。该方法以正常样本为基础,通过相似性分析增强故障样本与正常样本之间的差异。在增强的样本中引入两种噪声,以提高模型的鲁棒性。使用少量标记数据训练堆叠监督自动编码器(SSAE)网络。提取深度特征信息,建立初步的故障分类模型。为无标签样本生成伪标签,以克服故障数据标签不足的问题。在分类模型的调整阶段,提出了整合伪标签和一致性正则化的损失函数,以防止模型的过拟合和鲁棒性差。在田纳西伊士曼(TE)基准流程和三相流流程上进行了仿真实验,结果验证了所提方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Intelligent design of nerve guidance conduits: An artificial intelligence‐driven fluid structure interaction study on modelling and optimization of nerve growth Synergistic effect of alcohol polyoxyethylene ether sodium sulphate and copper foam on methane hydrate formation Effect of the main components in gasification wastewater on the surface properties of coal water slurry Global dynamic features and information of adjacent hidden layer enhancement based on autoencoder for industrial process soft sensor application Computational modelling and optimization of physicochemical absorption of CO2 in rotating packed bed
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1