Girvanella fossils from the Phanerozoic: Distribution, evolution and controlling factors

Hua-Shan Zhang , Ming-Yue Dai , Yong-An Qi , Lan-Lan Han , Zhong-Lei Yin , Song-Hua Chen , Liang-Biao Lin
{"title":"Girvanella fossils from the Phanerozoic: Distribution, evolution and controlling factors","authors":"Hua-Shan Zhang ,&nbsp;Ming-Yue Dai ,&nbsp;Yong-An Qi ,&nbsp;Lan-Lan Han ,&nbsp;Zhong-Lei Yin ,&nbsp;Song-Hua Chen ,&nbsp;Liang-Biao Lin","doi":"10.1016/j.jop.2024.07.004","DOIUrl":null,"url":null,"abstract":"<div><div><em>Girvanella</em> is one of the common genera of cyanobacteria that plays a monumental role in the evolution of life on Earth and the formation of microbialites. Based on a detailed search in the literature of <em>Girvanella</em> fossils, we have compiled a global database of <em>Girvanella</em> fossils and revealed the evolution of <em>Girvanella</em> fossils throughout the Phanerozoic. Four species, <em>Girvanella kasakiensis</em>, <em>Girvanella problematica</em>, <em>Girvanella wetheredii</em>, and <em>Girvanella staminea</em>, are recognized and described. These data show that <em>Girvanella</em> fossils have well-defined temporal distribution during the Paleozoic Era, have a significant temporal gap in the Mesozoic Era, and have only been recorded sporadically in the Cenozoic Era. They were relatively abundant during the Cambrian Epoch 2–Early Ordovician, Late Ordovician, Late Devonian–Mississippian, and tended to lesser degrees during the Silurian–Early Devonian, Lopingian Epoch–Middle Jurassic, and Cretaceous–Present day. Furthermore, the evolution of the abundance and diversity of <em>Girvanella</em> fossils was fundamentally consistent and showed episodical declining during the Phanerozoic. To further explore these relationships, we thoroughly compared them with environmental factors such as seawater carbonate saturation state, Ca<sup>2+</sup> concentration, pH values, and atmospheric partial pressure of carbon dioxide (<em>p</em>CO<sub>2</sub>). This study indicates that seawater carbonate saturation state and Ca<sup>2+</sup> concentration are major controls on secular patterns of the abundance and diversity of <em>Girvanella</em> fossils, together with the secondary factors of pH values and <em>p</em>CO<sub>2</sub>. Considering the long history of <em>Girvanella</em> fossils, their abundance and diversity offer the potential to assist the interpretation of the long-term evolution of marine and atmosphere components during the Phanerozoic.</div></div>","PeriodicalId":100819,"journal":{"name":"Journal of Palaeogeography","volume":"13 4","pages":"Pages 924-938"},"PeriodicalIF":0.0000,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Palaeogeography","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095383624000737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Girvanella is one of the common genera of cyanobacteria that plays a monumental role in the evolution of life on Earth and the formation of microbialites. Based on a detailed search in the literature of Girvanella fossils, we have compiled a global database of Girvanella fossils and revealed the evolution of Girvanella fossils throughout the Phanerozoic. Four species, Girvanella kasakiensis, Girvanella problematica, Girvanella wetheredii, and Girvanella staminea, are recognized and described. These data show that Girvanella fossils have well-defined temporal distribution during the Paleozoic Era, have a significant temporal gap in the Mesozoic Era, and have only been recorded sporadically in the Cenozoic Era. They were relatively abundant during the Cambrian Epoch 2–Early Ordovician, Late Ordovician, Late Devonian–Mississippian, and tended to lesser degrees during the Silurian–Early Devonian, Lopingian Epoch–Middle Jurassic, and Cretaceous–Present day. Furthermore, the evolution of the abundance and diversity of Girvanella fossils was fundamentally consistent and showed episodical declining during the Phanerozoic. To further explore these relationships, we thoroughly compared them with environmental factors such as seawater carbonate saturation state, Ca2+ concentration, pH values, and atmospheric partial pressure of carbon dioxide (pCO2). This study indicates that seawater carbonate saturation state and Ca2+ concentration are major controls on secular patterns of the abundance and diversity of Girvanella fossils, together with the secondary factors of pH values and pCO2. Considering the long history of Girvanella fossils, their abundance and diversity offer the potential to assist the interpretation of the long-term evolution of marine and atmosphere components during the Phanerozoic.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
新生代的吉尔瓦内拉化石:分布、演化和控制因素
是蓝藻的常见属种之一,在地球生命进化和微生物岩的形成过程中发挥着不朽的作用。在对化石文献进行详细检索的基础上,我们编制了一个全球化石数据库,并揭示了化石在整个新生代的演化过程。确认并描述了、、和四个物种。这些数据表明,化石在古生代有明确的时间分布,在中生代有明显的时间空白,在新生代仅有零星记录。它们在寒武纪第二世-奥陶纪早期、奥陶纪晚期、泥盆纪晚期-密西西比期数量相对较多,在志留纪-泥盆纪早期、罗平纪-侏罗纪中期和白垩纪-现今数量较少。此外,化石的丰度和多样性的演变基本一致,在新生代期间呈偶发性下降。为了进一步探讨这些关系,我们将其与海水碳酸盐饱和状态、钙浓度、pH 值和大气二氧化碳分压等环境因素进行了深入比较。这项研究表明,海水碳酸盐饱和状态和钙的浓度是控制化石丰度和多样性的主要因素,pH 值和 CO 是次要因素。考虑到化石的悠久历史,它们的丰度和多样性有可能有助于解释新生代期间海洋和大气成分的长期演变。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatio-temporal variability in microfossil and geochemical records of Cenomanian-Turonian oceanic anoxic event-2: a review A combined tectono-climatic control on Holocene sedimentation in Ladakh Himalaya, India: Clues from Anisotropy of Magnetic Susceptibility (AMS) of lake sediments Evolution of Neoproterozoic siliciclastic Kerur Formation in the light of sequence stratigraphic framework: Badami Basin, Karnataka, India Extensive carbon cycle between peatland and vegetation: Insights from high net primary productivity of the Middle Jurassic in northwestern China A remarkable decade of learning and sharing knowledge through the Journal of Palaeogeography (JoP) (2014–2024): Reminiscences from an Associate Editor-in-Chief
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1