CASA: A Framework for SLO and Carbon-Aware Autoscaling and Scheduling in Serverless Cloud Computing

S. Qi, H. Moore, N. Hogade, D. Milojicic, C. Bash, S. Pasricha
{"title":"CASA: A Framework for SLO and Carbon-Aware Autoscaling and Scheduling in Serverless Cloud Computing","authors":"S. Qi, H. Moore, N. Hogade, D. Milojicic, C. Bash, S. Pasricha","doi":"arxiv-2409.00550","DOIUrl":null,"url":null,"abstract":"Serverless computing is an emerging cloud computing paradigm that can reduce\ncosts for cloud providers and their customers. However, serverless cloud\nplatforms have stringent performance requirements (due to the need to execute\nshort duration functions in a timely manner) and a growing carbon footprint.\nTraditional carbon-reducing techniques such as shutting down idle containers\ncan reduce performance by increasing cold-start latencies of containers\nrequired in the future. This can cause higher violation rates of service level\nobjectives (SLOs). Conversely, traditional latency-reduction approaches of\nprewarming containers or keeping them alive when not in use can improve\nperformance but increase the associated carbon footprint of the serverless\ncluster platform. To strike a balance between sustainability and performance,\nin this paper, we propose a novel carbon- and SLO-aware framework called CASA\nto schedule and autoscale containers in a serverless cloud computing cluster.\nExperimental results indicate that CASA reduces the operational carbon\nfootprint of a FaaS cluster by up to 2.6x while also reducing the SLO violation\nrate by up to 1.4x compared to the state-of-the-art.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"24 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.00550","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Serverless computing is an emerging cloud computing paradigm that can reduce costs for cloud providers and their customers. However, serverless cloud platforms have stringent performance requirements (due to the need to execute short duration functions in a timely manner) and a growing carbon footprint. Traditional carbon-reducing techniques such as shutting down idle containers can reduce performance by increasing cold-start latencies of containers required in the future. This can cause higher violation rates of service level objectives (SLOs). Conversely, traditional latency-reduction approaches of prewarming containers or keeping them alive when not in use can improve performance but increase the associated carbon footprint of the serverless cluster platform. To strike a balance between sustainability and performance, in this paper, we propose a novel carbon- and SLO-aware framework called CASA to schedule and autoscale containers in a serverless cloud computing cluster. Experimental results indicate that CASA reduces the operational carbon footprint of a FaaS cluster by up to 2.6x while also reducing the SLO violation rate by up to 1.4x compared to the state-of-the-art.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CASA:无服务器云计算中的 SLO 和碳感知自动扩展与调度框架
无服务器计算是一种新兴的云计算模式,可以为云提供商及其客户降低成本。然而,无服务器云平台对性能有严格要求(因为需要及时执行短时功能),而且碳足迹也在不断增加。传统的减碳技术(如关闭闲置容器)会增加未来需要的容器的冷启动延迟,从而降低性能。传统的减碳技术(如关闭闲置容器)会增加未来需要的容器的冷启动延迟,从而降低性能,这可能会导致更高的服务级别目标(SLO)违反率。相反,对容器进行预热或在不使用时保持容器存活的传统延迟降低方法,虽然可以提高性能,但会增加无服务器集群平台的相关碳足迹。为了在可持续发展和性能之间取得平衡,我们在本文中提出了一种名为 CASA 的新型碳和 SLO 感知框架,用于在无服务器云计算集群中调度和自动扩展容器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1