{"title":"Dynamic and concordance-assisted learning for risk stratification with application to Alzheimer's disease.","authors":"Wen Li,Ruosha Li,Ziding Feng,Jing Ning,","doi":"10.1093/biostatistics/kxae036","DOIUrl":null,"url":null,"abstract":"Dynamic prediction models capable of retaining accuracy by evolving over time could play a significant role for monitoring disease progression in clinical practice. In biomedical studies with long-term follow up, participants are often monitored through periodic clinical visits with repeat measurements until an occurrence of the event of interest (e.g. disease onset) or the study end. Acknowledging the dynamic nature of disease risk and clinical information contained in the longitudinal markers, we propose an innovative concordance-assisted learning algorithm to derive a real-time risk stratification score. The proposed approach bypasses the need to fit regression models, such as joint models of the longitudinal markers and time-to-event outcome, and hence enjoys the desirable property of model robustness. Simulation studies confirmed that the proposed method has satisfactory performance in dynamically monitoring the risk of developing disease and differentiating high-risk and low-risk population over time. We apply the proposed method to the Alzheimer's Disease Neuroimaging Initiative data and develop a dynamic risk score of Alzheimer's Disease for patients with mild cognitive impairment using multiple longitudinal markers and baseline prognostic factors.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1093/biostatistics/kxae036","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Dynamic prediction models capable of retaining accuracy by evolving over time could play a significant role for monitoring disease progression in clinical practice. In biomedical studies with long-term follow up, participants are often monitored through periodic clinical visits with repeat measurements until an occurrence of the event of interest (e.g. disease onset) or the study end. Acknowledging the dynamic nature of disease risk and clinical information contained in the longitudinal markers, we propose an innovative concordance-assisted learning algorithm to derive a real-time risk stratification score. The proposed approach bypasses the need to fit regression models, such as joint models of the longitudinal markers and time-to-event outcome, and hence enjoys the desirable property of model robustness. Simulation studies confirmed that the proposed method has satisfactory performance in dynamically monitoring the risk of developing disease and differentiating high-risk and low-risk population over time. We apply the proposed method to the Alzheimer's Disease Neuroimaging Initiative data and develop a dynamic risk score of Alzheimer's Disease for patients with mild cognitive impairment using multiple longitudinal markers and baseline prognostic factors.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.