Computational Algorithms for the Product Form Solution of Closed Queuing Networks with Finite Buffers and Skip-Over Policy

Gianfranco Balbo, Andrea Marin, Diletta Olliaro, Matteo Sereno
{"title":"Computational Algorithms for the Product Form Solution of Closed Queuing Networks with Finite Buffers and Skip-Over Policy","authors":"Gianfranco Balbo, Andrea Marin, Diletta Olliaro, Matteo Sereno","doi":"arxiv-2409.08075","DOIUrl":null,"url":null,"abstract":"Closed queuing networks with finite capacity buffers and skip-over policies\nare fundamental models in the performance evaluation of computer and\ncommunication systems. This technical report presents the details of\ncomputational algorithms to derive the key performance metrics for such\nnetworks. The primary focus is on the efficient computation of the\nnormalization constant, which is critical for determining the steady-state\nprobabilities of the network states under investigation. A convolution\nalgorithm is proposed, which paves the way for the computation of key\nperformance indices, such as queue length distribution and throughput,\naccommodating the intricacies introduced by finite capacity constraints and\nskip-over mechanisms. Finally, an extension of the traditional Mean Value\nAnalysis algorithm addressing numerical stability is provided. The approaches\ndiscussed here allow make the investigation of large-scale networks feasible\nand enable the development of robust implementations of these techniques for\npractical use.","PeriodicalId":501291,"journal":{"name":"arXiv - CS - Performance","volume":"84 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Performance","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.08075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Closed queuing networks with finite capacity buffers and skip-over policies are fundamental models in the performance evaluation of computer and communication systems. This technical report presents the details of computational algorithms to derive the key performance metrics for such networks. The primary focus is on the efficient computation of the normalization constant, which is critical for determining the steady-state probabilities of the network states under investigation. A convolution algorithm is proposed, which paves the way for the computation of key performance indices, such as queue length distribution and throughput, accommodating the intricacies introduced by finite capacity constraints and skip-over mechanisms. Finally, an extension of the traditional Mean Value Analysis algorithm addressing numerical stability is provided. The approaches discussed here allow make the investigation of large-scale networks feasible and enable the development of robust implementations of these techniques for practical use.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有有限缓冲区和跳过策略的封闭排队网络乘积形式求解计算算法
具有有限容量缓冲区和跳过策略的封闭队列网络是计算机和通信系统性能评估的基本模型。本技术报告详细介绍了用于推导此类网络关键性能指标的计算算法。主要重点是归一化常数的高效计算,这对于确定所研究网络状态的稳态概率至关重要。此外,还提出了一种卷积算法,为队列长度分布和吞吐量等关键性能指标的计算铺平了道路,同时还考虑到了有限容量约束和跳过机制带来的复杂性。最后,还对传统的均值分析算法进行了扩展,以解决数值稳定性问题。本文讨论的方法使大规模网络的研究变得可行,并使这些技术的稳健实现成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
HRA: A Multi-Criteria Framework for Ranking Metaheuristic Optimization Algorithms Temporal Load Imbalance on Ondes3D Seismic Simulator for Different Multicore Architectures Can Graph Reordering Speed Up Graph Neural Network Training? An Experimental Study The Landscape of GPU-Centric Communication A Global Perspective on the Past, Present, and Future of Video Streaming over Starlink
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1