Microwave radar diagnostics of piston motion in a free-piston-driven expansion tube

IF 1.7 4区 工程技术 Q3 MECHANICS Shock Waves Pub Date : 2024-08-24 DOI:10.1007/s00193-024-01194-1
Y. Kurosaka, K. Shimamura
{"title":"Microwave radar diagnostics of piston motion in a free-piston-driven expansion tube","authors":"Y. Kurosaka,&nbsp;K. Shimamura","doi":"10.1007/s00193-024-01194-1","DOIUrl":null,"url":null,"abstract":"<div><p>Application of microwave radar is a useful approach to gauge piston motion in a free-piston driver. One difficulty associated with conventional microwave technique is its spatial resolution during rapid velocity shifts at diaphragm rupture timings. This study, while departing from the standard practice of analyzing standing wave peaks, introduces an alternative by examining the phase shift of the microwave in-phase and quadrature signals. A compact free-piston-driven expansion tube, MX6.0, is used as the test bed for this technique. A microwave frequency of 4.2 GHz is used to take measurements in a compression tube with a diameter of 50 mm and a length of 2.0 m, tracking the motion of the piston. After arranging the microwave radar systems, the piston velocity and displacement trajectory are measured. Compared to the lower-resolution measurements using conventional microwave wavelength intervals, the use of microwave phase allowed for an exceptionally high spatial resolution in analyzing the piston motion.</p></div>","PeriodicalId":775,"journal":{"name":"Shock Waves","volume":"34 5","pages":"465 - 474"},"PeriodicalIF":1.7000,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00193-024-01194-1.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Shock Waves","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s00193-024-01194-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

Application of microwave radar is a useful approach to gauge piston motion in a free-piston driver. One difficulty associated with conventional microwave technique is its spatial resolution during rapid velocity shifts at diaphragm rupture timings. This study, while departing from the standard practice of analyzing standing wave peaks, introduces an alternative by examining the phase shift of the microwave in-phase and quadrature signals. A compact free-piston-driven expansion tube, MX6.0, is used as the test bed for this technique. A microwave frequency of 4.2 GHz is used to take measurements in a compression tube with a diameter of 50 mm and a length of 2.0 m, tracking the motion of the piston. After arranging the microwave radar systems, the piston velocity and displacement trajectory are measured. Compared to the lower-resolution measurements using conventional microwave wavelength intervals, the use of microwave phase allowed for an exceptionally high spatial resolution in analyzing the piston motion.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微波雷达诊断自由活塞驱动膨胀管中的活塞运动
应用微波雷达是测量自由活塞驱动装置中活塞运动的有效方法。与传统微波技术相关的一个困难是,它在隔膜破裂时速度快速变化时的空间分辨率。本研究不同于分析驻波峰值的标准做法,而是通过检查微波同相和正交信号的相移来引入一种替代方法。MX6.0 是一种紧凑型自由活塞驱动膨胀管,被用作该技术的试验台。在直径为 50 毫米、长度为 2.0 米的压缩管中使用 4.2 千兆赫的微波频率进行测量,跟踪活塞的运动。在布置微波雷达系统后,测量活塞的速度和位移轨迹。与使用传统微波波长间隔进行的低分辨率测量相比,使用微波相位可在分析活塞运动时获得极高的空间分辨率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Shock Waves
Shock Waves 物理-力学
CiteScore
4.10
自引率
9.10%
发文量
41
审稿时长
17.4 months
期刊介绍: Shock Waves provides a forum for presenting and discussing new results in all fields where shock and detonation phenomena play a role. The journal addresses physicists, engineers and applied mathematicians working on theoretical, experimental or numerical issues, including diagnostics and flow visualization. The research fields considered include, but are not limited to, aero- and gas dynamics, acoustics, physical chemistry, condensed matter and plasmas, with applications encompassing materials sciences, space sciences, geosciences, life sciences and medicine. Of particular interest are contributions which provide insights into fundamental aspects of the techniques that are relevant to more than one specific research community. The journal publishes scholarly research papers, invited review articles and short notes, as well as comments on papers already published in this journal. Occasionally concise meeting reports of interest to the Shock Waves community are published.
期刊最新文献
An experimental and kinetic modeling study of the autoignition of syngas mixtures behind reflected shock waves Asymmetry of imploding detonations in thin channels Thematic issue on blast exposure research in military training environments Optical measurement of state variables associated with blast wave evolution Influence of fuel inhomogeneity on detonation wave propagation in a rotating detonation combustor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1