{"title":"Synthesis, crystal structure, biological and docking studies of 5-hydroxy-2-{[(2-methylpropyl)iminio]methyl}phenolate.","authors":"Arjunan Ayyappan,Sebastian Arockiasamy","doi":"10.1080/17568919.2024.2389763","DOIUrl":null,"url":null,"abstract":"Background: Schiff base compounds are potential drugs.Results: A Schiff base compound prepared by condensing 2,4-dihydroxy benzaldehyde and isobutylamine was characterized for structure, thermal, physicochemical and biological properties. The keto-enol tautomerism and azomethine functionality enhances electron delocaliZation and biological activity. The compound showed good antibacterial and antifungal activity at 40 μg/ml against bacteria such as Escherichia coli and Staphylococcus aureus and fungi like Candida albicans and Candida tropicalis. The docking study exhibits a moderate binding affinity for the GyrB protein in E. coli with a binding energy of -4.26 kcal/mol.Conclusion: The compound exhibits enhanced biological activity and suppression of cell growth at concentrations as low as 30 μg/ml. The IC50 for MFC-7 was found to be 41.5 μg/ml.","PeriodicalId":12475,"journal":{"name":"Future medicinal chemistry","volume":"42 1","pages":"1-16"},"PeriodicalIF":3.2000,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future medicinal chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1080/17568919.2024.2389763","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Schiff base compounds are potential drugs.Results: A Schiff base compound prepared by condensing 2,4-dihydroxy benzaldehyde and isobutylamine was characterized for structure, thermal, physicochemical and biological properties. The keto-enol tautomerism and azomethine functionality enhances electron delocaliZation and biological activity. The compound showed good antibacterial and antifungal activity at 40 μg/ml against bacteria such as Escherichia coli and Staphylococcus aureus and fungi like Candida albicans and Candida tropicalis. The docking study exhibits a moderate binding affinity for the GyrB protein in E. coli with a binding energy of -4.26 kcal/mol.Conclusion: The compound exhibits enhanced biological activity and suppression of cell growth at concentrations as low as 30 μg/ml. The IC50 for MFC-7 was found to be 41.5 μg/ml.
期刊介绍:
Future Medicinal Chemistry offers a forum for the rapid publication of original research and critical reviews of the latest milestones in the field. Strong emphasis is placed on ensuring that the journal stimulates awareness of issues that are anticipated to play an increasingly central role in influencing the future direction of pharmaceutical chemistry. Where relevant, contributions are also actively encouraged on areas as diverse as biotechnology, enzymology, green chemistry, genomics, immunology, materials science, neglected diseases and orphan drugs, pharmacogenomics, proteomics and toxicology.