Integrating Novel Stellarator Single-Stage Optimization Algorithms to Design the Columbia Stellarator Experiment

A. Baillod, E. J. Paul, G. Rawlinson, M. Haque, S. W. Freiberger, S. Thapa
{"title":"Integrating Novel Stellarator Single-Stage Optimization Algorithms to Design the Columbia Stellarator Experiment","authors":"A. Baillod, E. J. Paul, G. Rawlinson, M. Haque, S. W. Freiberger, S. Thapa","doi":"arxiv-2409.05261","DOIUrl":null,"url":null,"abstract":"The Columbia Stellarator eXperiment (CSX), currently being designed at\nColumbia University, aims to test theoretical predictions related to QA plasma\nbehavior, and to pioneer the construction of an optimized stellarator using\nthree-dimensional, non-insulated high-temperature superconducting (NI-HTS)\ncoils. The magnetic configuration is generated by a combination of two circular\nplanar poloidal field (PF) coils and two 3D-shaped interlinked (IL) coils, with\nthe possibility to add windowpane coils to enhance shaping and experimental\nflexibility. The PF coils and vacuum vessel are repurposed from the former\nColumbia Non-Neutral Torus (CNT) experiment, while the IL coils will be\ncustom-wound in-house using NI-HTS tapes. To obtain a plasma shape that meets\nthe physics objectives with a limited number of coils, novel single-stage\noptimization techniques are employed, optimizing both the plasma and coils\nconcurrently, in particular targeting a tight aspect ratio QA plasma and\nminimized strain on the HTS tape. Despite the increased complexity due to the\nexpanded degrees of freedom, these methods successfully identify optimized\nplasma geometries that can be realized by coils meeting engineering\nspecifications. This paper discusses the derivation of the constraints and\nobjectives specific to CSX, and describe how two recently developed\nsingle-stage optimization methodologies are applied to the design of CSX. A set\nof selected configurations for CSX is then described in detail.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05261","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The Columbia Stellarator eXperiment (CSX), currently being designed at Columbia University, aims to test theoretical predictions related to QA plasma behavior, and to pioneer the construction of an optimized stellarator using three-dimensional, non-insulated high-temperature superconducting (NI-HTS) coils. The magnetic configuration is generated by a combination of two circular planar poloidal field (PF) coils and two 3D-shaped interlinked (IL) coils, with the possibility to add windowpane coils to enhance shaping and experimental flexibility. The PF coils and vacuum vessel are repurposed from the former Columbia Non-Neutral Torus (CNT) experiment, while the IL coils will be custom-wound in-house using NI-HTS tapes. To obtain a plasma shape that meets the physics objectives with a limited number of coils, novel single-stage optimization techniques are employed, optimizing both the plasma and coils concurrently, in particular targeting a tight aspect ratio QA plasma and minimized strain on the HTS tape. Despite the increased complexity due to the expanded degrees of freedom, these methods successfully identify optimized plasma geometries that can be realized by coils meeting engineering specifications. This paper discusses the derivation of the constraints and objectives specific to CSX, and describe how two recently developed single-stage optimization methodologies are applied to the design of CSX. A set of selected configurations for CSX is then described in detail.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
整合新型恒星仪单级优化算法,设计哥伦比亚恒星仪实验
哥伦比亚恒星仪实验(CSX)目前正在哥伦比亚大学进行设计,其目的是测试与QA等离子体行为有关的理论预测,并率先使用三维非绝缘高温超导(NI-HTS)线圈建造优化的恒星仪。磁配置由两个环形平面极性场(PF)线圈和两个三维形状的相互连接(IL)线圈组合而成,并可添加窗格线圈,以增强塑形和实验灵活性。PF 线圈和真空容器是从以前的哥伦比亚非中性环(CNT)实验中重新利用的,而 IL 线圈将使用 NI-HTS 磁带在内部定制绕制。为了在线圈数量有限的情况下获得符合物理目标的等离子体形状,我们采用了新颖的单级优化技术,同时优化等离子体和线圈,特别是针对高宽比 QA 等离子体和 HTS 磁带上的最小应变。尽管由于自由度的扩大而增加了复杂性,但这些方法成功地确定了优化的等离子体几何形状,这些几何形状可以通过符合工程规格的线圈来实现。本文讨论了 CSX 的特定约束和目标的推导,并介绍了如何将最近开发的两种单级优化方法应用于 CSX 的设计。然后详细介绍了 CSX 的一组选定配置。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oscillation damper for misaligned witness in plasma wakefield accelerator Turbulence and transport in mirror geometries in the Large Plasma Device Wave Steepening and Shock Formation in Ultracold Neutral Plasmas Limitations from charge quantization on the parallel temperature diagnostic of nonneutral plasmas An Extended Variational Method for the Resistive Wall Mode in Toroidal Plasma Confinement Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1