Slope of Magnetic Field-Density Relation as An Indicator of Magnetic Dominance

Mengke Zhao, Guang-Xing Li, Keping Qiu
{"title":"Slope of Magnetic Field-Density Relation as An Indicator of Magnetic Dominance","authors":"Mengke Zhao, Guang-Xing Li, Keping Qiu","doi":"arxiv-2409.02786","DOIUrl":null,"url":null,"abstract":"The electromagnetic field is a fundamental force in nature that regulates the\nformation of stars in the universe. Despite decades of efforts, a reliable\nassessment of the importance of the magnetic fields in star formation relations\nremains missing. In star-formation research, our acknowledgment of the\nimportance of magnetic field is best summarized by the Cruther+ 2010 B-rho\nrelation. The relation is either interpreted as proof of the importance of a\nmagnetic field in the collapse, or the result of self-similar collapse where\nthe role of the magnetic is secondary to gravity. Using simulations, we find a\nfundamental relation, ${\\cal M}_{\\rm A}$-k$_{B-\\rho}$(slope of $B-\\rho$\nrelation) relation. This fundamental B-$\\rho$-slope relation enables one to\nmeasure the Alfv\\'enic Mach number, a direct indicator of the importance of the\nmagnetic field, using the distribution of data in the B-$\\rho$ plane. It allows\nus to drive the following empirical $B-\\rho$ relation \\begin{equation} \\frac{B}{B_c} = {\\rm exp}\\left(\\left(\\frac{\\gamma}{{\\cal\nK}}\\right)^{-1}\\left( \\frac{\\rho}{\\rho_c}\\right)^\\frac{\\gamma}{{\\cal\nK}}\\right)\\nonumber, \\end{equation} which offers an excellent fit to the\nCruther et al. data, where we assume ${\\cal M}_{\\rm A}-\\rho$ relation. The\nfoundational ${\\cal M}_{\\rm A}-{\\rm k}_{B-\\rho}$ relation provides an\nindependent way to measure the importance of magnetic field against the\nkinematic motion using multiple magnetic field measurements. Our approach\noffers a new interpretation of Cruther+2010, where a gradual decrease in the\nimportance of B at higher densities is implied.","PeriodicalId":501274,"journal":{"name":"arXiv - PHYS - Plasma Physics","volume":"62 6 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - Plasma Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.02786","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The electromagnetic field is a fundamental force in nature that regulates the formation of stars in the universe. Despite decades of efforts, a reliable assessment of the importance of the magnetic fields in star formation relations remains missing. In star-formation research, our acknowledgment of the importance of magnetic field is best summarized by the Cruther+ 2010 B-rho relation. The relation is either interpreted as proof of the importance of a magnetic field in the collapse, or the result of self-similar collapse where the role of the magnetic is secondary to gravity. Using simulations, we find a fundamental relation, ${\cal M}_{\rm A}$-k$_{B-\rho}$(slope of $B-\rho$ relation) relation. This fundamental B-$\rho$-slope relation enables one to measure the Alfv\'enic Mach number, a direct indicator of the importance of the magnetic field, using the distribution of data in the B-$\rho$ plane. It allows us to drive the following empirical $B-\rho$ relation \begin{equation} \frac{B}{B_c} = {\rm exp}\left(\left(\frac{\gamma}{{\cal K}}\right)^{-1}\left( \frac{\rho}{\rho_c}\right)^\frac{\gamma}{{\cal K}}\right)\nonumber, \end{equation} which offers an excellent fit to the Cruther et al. data, where we assume ${\cal M}_{\rm A}-\rho$ relation. The foundational ${\cal M}_{\rm A}-{\rm k}_{B-\rho}$ relation provides an independent way to measure the importance of magnetic field against the kinematic motion using multiple magnetic field measurements. Our approach offers a new interpretation of Cruther+2010, where a gradual decrease in the importance of B at higher densities is implied.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
磁场-密度关系斜率作为磁场优势的指标
电磁场是调节宇宙中恒星形成的一种基本自然力。尽管经过了几十年的努力,但对磁场在恒星形成关系中重要性的可靠评估仍然缺失。在恒星形成研究中,我们对磁场重要性的认识最好的概括就是克拉瑟+ 2010 B-rh关系。这种关系要么被解释为磁场在坍缩中的重要性的证明,要么被解释为自相似坍缩的结果,在这种坍缩中磁场的作用次于引力。通过模拟,我们发现了一个基本关系,即${\cal M}_{\rm A}$-k$_{B-\rho}$($B-\rho$关系的斜率)关系。这种基本的B-$\rho$-斜率关系使我们能够利用B-$\rho$平面上的数据分布来测量Alfv\'enic马赫数,这是磁场重要性的一个直接指标。它允许我们驱动下面的经验$B-\rho$关系 \begin{equation}(开始{equation})\{frac{B}{B_c} = {\rm exp}\left(\left(\frac{\gamma}{\calK}}\right)^{-1}left( \frac{\rho}{\rho_c}\right)^\frac{\gamma}{\calK}}\right)\nonumber, (end{equation})这为Cruther等人的数据提供了很好的拟合。数据,其中我们假设了 $\{cal M}_\{rm A}-\rho$ 关系。这种基本的${cal M}_{\rm A}-{\rm k}_{B-\rho}$ 关系提供了一种独立的方法,可以利用多重磁场测量来衡量磁场对动力学运动的重要性。我们的方法为 Cruther+2010 提供了一种新的解释,即在密度较高时,B 的重要性会逐渐降低。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Oscillation damper for misaligned witness in plasma wakefield accelerator Turbulence and transport in mirror geometries in the Large Plasma Device Wave Steepening and Shock Formation in Ultracold Neutral Plasmas Limitations from charge quantization on the parallel temperature diagnostic of nonneutral plasmas An Extended Variational Method for the Resistive Wall Mode in Toroidal Plasma Confinement Devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1