{"title":"Neonatal Infectious Disease: A Major Contributor to Infant Mortality Requiring Advances in Point-of-Care Diagnosis","authors":"Mary Garvey","doi":"10.3390/antibiotics13090877","DOIUrl":null,"url":null,"abstract":"Neonatal infectious disease continues to result in high rates of infant morbidity and mortality. Early- and late-onset disease represent difficult to detect and difficult to treat illnesses, particularly when antimicrobial resistant pathogens are present. Newborns are immunodeficient and are at increased risk of vertical and horizontal infection, with preterm infants increasingly susceptible. Additional risk factors associated with infection include prolonged use of a central catheter and/or ventilation, congenital abnormalities, admittance to intensive care units, and the use of broad-spectrum antibiotics. There is increasing recognition of the importance of the host microbiome and dysbiosis on neonatal infectious disease, including necrotising enterocolitis and sepsis in patients. Current diagnostic methods rely on blood culture, which is unreliable, time consuming, and can result in false negatives. There is a lack of accurate and reliable diagnostic tools available for the early detection of infectious disease in infants; therefore, efficient triage and treatment remains challenging. The application of biomarkers, machine learning, artificial intelligence, biosensors, and microfluidics technology, may offer improved diagnostic methodologies. Point-of-care devices, such diagnostic methodologies, may provide fast, reliable, and accurate diagnostic aids for neonatal patients. This review will discuss neonatal infectious disease as impacted by antimicrobial resistance and will highlight novel point-of-care diagnostic options.","PeriodicalId":8151,"journal":{"name":"Antibiotics","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Antibiotics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/antibiotics13090877","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Neonatal infectious disease continues to result in high rates of infant morbidity and mortality. Early- and late-onset disease represent difficult to detect and difficult to treat illnesses, particularly when antimicrobial resistant pathogens are present. Newborns are immunodeficient and are at increased risk of vertical and horizontal infection, with preterm infants increasingly susceptible. Additional risk factors associated with infection include prolonged use of a central catheter and/or ventilation, congenital abnormalities, admittance to intensive care units, and the use of broad-spectrum antibiotics. There is increasing recognition of the importance of the host microbiome and dysbiosis on neonatal infectious disease, including necrotising enterocolitis and sepsis in patients. Current diagnostic methods rely on blood culture, which is unreliable, time consuming, and can result in false negatives. There is a lack of accurate and reliable diagnostic tools available for the early detection of infectious disease in infants; therefore, efficient triage and treatment remains challenging. The application of biomarkers, machine learning, artificial intelligence, biosensors, and microfluidics technology, may offer improved diagnostic methodologies. Point-of-care devices, such diagnostic methodologies, may provide fast, reliable, and accurate diagnostic aids for neonatal patients. This review will discuss neonatal infectious disease as impacted by antimicrobial resistance and will highlight novel point-of-care diagnostic options.