Samuel Hand, Alexander Koch, Pascal Lafourcade, Daiki Miyahara, Léo Robert
{"title":"Efficient Card-Based ZKP for Single Loop Condition and Its Application to Moon-or-Sun","authors":"Samuel Hand, Alexander Koch, Pascal Lafourcade, Daiki Miyahara, Léo Robert","doi":"10.1007/s00354-024-00274-1","DOIUrl":null,"url":null,"abstract":"<p>A zero-knowledge proof (ZKP) allows a prover to prove to a verifier that it knows some secret, such as a solution to a difficult puzzle, without revealing any information about it. In recent years, ZKP protocols using only a deck of playing cards for solutions to various pencil puzzles have been proposed. The previous work of Lafourcade et al. deals with a famous puzzle called Slitherlink. Their proposed protocol can verify that a solution forms a single loop without revealing anything about the solution, except this fact. Their protocol guarantees that the solution satisfies the single-loop condition, by interactively constructing a solution starting from a state that holds a simple single loop, and proceeding via steps that preserve the invariant of encoding a single loop, until the proper solution is reached. A drawback of their protocol is that it requires additional verifications to guarantee a single loop. In this study, we propose a more efficient ZKP protocol for such a puzzle with fewer additional verifications. For this, we employ the previous work of Robert et al., which addressed the connectivity property in a puzzle. That is, we verify that a solution is connected but not split, to be a single loop. Applying our proposal, we construct a card-based ZKP protocol for Moon-or-Sun, which has its specific rule of alternating pattern in addition to the single-loop condition.</p>","PeriodicalId":54726,"journal":{"name":"New Generation Computing","volume":"182 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Generation Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00354-024-00274-1","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
A zero-knowledge proof (ZKP) allows a prover to prove to a verifier that it knows some secret, such as a solution to a difficult puzzle, without revealing any information about it. In recent years, ZKP protocols using only a deck of playing cards for solutions to various pencil puzzles have been proposed. The previous work of Lafourcade et al. deals with a famous puzzle called Slitherlink. Their proposed protocol can verify that a solution forms a single loop without revealing anything about the solution, except this fact. Their protocol guarantees that the solution satisfies the single-loop condition, by interactively constructing a solution starting from a state that holds a simple single loop, and proceeding via steps that preserve the invariant of encoding a single loop, until the proper solution is reached. A drawback of their protocol is that it requires additional verifications to guarantee a single loop. In this study, we propose a more efficient ZKP protocol for such a puzzle with fewer additional verifications. For this, we employ the previous work of Robert et al., which addressed the connectivity property in a puzzle. That is, we verify that a solution is connected but not split, to be a single loop. Applying our proposal, we construct a card-based ZKP protocol for Moon-or-Sun, which has its specific rule of alternating pattern in addition to the single-loop condition.
期刊介绍:
The journal is specially intended to support the development of new computational and cognitive paradigms stemming from the cross-fertilization of various research fields. These fields include, but are not limited to, programming (logic, constraint, functional, object-oriented), distributed/parallel computing, knowledge-based systems, agent-oriented systems, and cognitive aspects of human embodied knowledge. It also encourages theoretical and/or practical papers concerning all types of learning, knowledge discovery, evolutionary mechanisms, human cognition and learning, and emergent systems that can lead to key technologies enabling us to build more complex and intelligent systems. The editorial board hopes that New Generation Computing will work as a catalyst among active researchers with broad interests by ensuring a smooth publication process.