Hybrid optimization‐based topology construction and DRNN‐based prediction method for data reduction in IoT

IF 1.7 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Communication Systems Pub Date : 2024-09-08 DOI:10.1002/dac.5969
Bhakti B. Pawar, Devyani S. Jadhav
{"title":"Hybrid optimization‐based topology construction and DRNN‐based prediction method for data reduction in IoT","authors":"Bhakti B. Pawar, Devyani S. Jadhav","doi":"10.1002/dac.5969","DOIUrl":null,"url":null,"abstract":"SummaryThe Internet of Things (IoT) acts as a prevalent networking setup that plays a vital role in everyday activities due to the increased services provided through uniform data collection. In this research paper, a hybrid optimization approach for the construction of heterogeneous multi‐hop IoT wireless sensor network (WSN) network topology and data aggregation and reduction is performed using a deep learning model. Initially, the IoT network is stimulated and the network topology is constructed using Namib Beetle Spotted Hyena Optimization (NBSHO) by considering different network parameters and encoding solutions. Moreover, the data aggregation and reduction in the IoT network are performed using a Deep Recurrent Neural Network (DRNN)‐based prediction model. In addition, the performance improvement of the designed NBSHO + DRNN approach is validated. Here, the designed NBSHO + DRNN method achieved a packet delivery ratio (PDR) of 0.469, energy of 0.367 J, prediction error of 0.237, and delay of 0.595 s.","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"67 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/dac.5969","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryThe Internet of Things (IoT) acts as a prevalent networking setup that plays a vital role in everyday activities due to the increased services provided through uniform data collection. In this research paper, a hybrid optimization approach for the construction of heterogeneous multi‐hop IoT wireless sensor network (WSN) network topology and data aggregation and reduction is performed using a deep learning model. Initially, the IoT network is stimulated and the network topology is constructed using Namib Beetle Spotted Hyena Optimization (NBSHO) by considering different network parameters and encoding solutions. Moreover, the data aggregation and reduction in the IoT network are performed using a Deep Recurrent Neural Network (DRNN)‐based prediction model. In addition, the performance improvement of the designed NBSHO + DRNN approach is validated. Here, the designed NBSHO + DRNN method achieved a packet delivery ratio (PDR) of 0.469, energy of 0.367 J, prediction error of 0.237, and delay of 0.595 s.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于优化的混合拓扑结构构建和基于 DRNN 的预测方法,用于减少物联网中的数据量
摘要物联网(IoT)作为一种普遍的网络设置,通过统一的数据收集提供更多的服务,在日常活动中发挥着至关重要的作用。在本研究论文中,采用了一种混合优化方法,利用深度学习模型构建异构多跳物联网无线传感器网络(WSN)的网络拓扑结构,并进行数据聚合和还原。首先,对物联网网络进行激励,通过考虑不同的网络参数和编码方案,使用纳米布甲虫斑鬣狗优化(NBSHO)构建网络拓扑。此外,还使用基于深度循环神经网络(DRNN)的预测模型对物联网网络中的数据进行聚合和还原。此外,还验证了所设计的 NBSHO + DRNN 方法的性能改进效果。在此,设计的 NBSHO + DRNN 方法实现了 0.469 的数据包交付率 (PDR)、0.367 J 的能量、0.237 的预测误差和 0.595 秒的延迟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
9.50%
发文量
323
审稿时长
7.9 months
期刊介绍: The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues. The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered: -Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.) -System control, network/service management -Network and Internet protocols and standards -Client-server, distributed and Web-based communication systems -Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity -Trials of advanced systems and services; their implementation and evaluation -Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation -Performance evaluation issues and methods.
期刊最新文献
Machine Learning Enabled Compact Frequency‐Tunable Triple‐Band Hexagonal‐Shaped Graphene Antenna for THz Communication Issue Information Issue Information Issue Information Implementation of optimal routing in heterogeneous wireless sensor network with multi‐channel Media Access Control protocol using Enhanced Henry Gas Solubility Optimizer
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1