{"title":"An efficient resource scheduling mechanism in LoRaWAN environment using coati optimal Q-reinforcement learning","authors":"J Uma Mahesh, Judhistir Mahapatro","doi":"10.1002/dac.5965","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>It is estimated that there will be over two dozen billion Internet of Things (IoT) connections in the future as the number of connected IoT devices grows rapidly. Due to characteristics like low power consumption and extensive coverage, low-power wide area networks (LPWANs) have become particularly relevant for the new paradigm. Long range wide area network (LoRaWAN) is one of the most alluring technological advances in these networks. Although it is one of the most developed LPWAN platforms, there are still unresolved issues, such as capacity limitations. Hence, this research introduces a novel resource scheduling technique for the LoRAWAN network using deep reinforcement learning. Here, the information on the LoRaWAN nodes is learned by the reinforcement technique, and the knowledge is utilized to allocate resources to improve the packet delivery ratio (PDR) performance through a proposed coati optimal Q-reinforcement learning (CO_QRL) model. Here, Q-reinforcement learning is utilized to learn the information about nodes, and the coati optimization algorithm (COA) helps to choose the optimal action for enhancing the reward. In the proposed scheduling algorithm, the weighted sum of successfully received packets is treated as a reward, and the server allocates resources to maximize this Q-reward. The evaluation of the proposed method based on PDR, packet success ratio (PSR), packet collision rate (PCR), time, delay, and energy accomplished the values of 0.917, 0.759, 0.253, 85, 0.029, 7.89, and 10.08, respectively.</p>\n </div>","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":"38 2","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/dac.5965","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
It is estimated that there will be over two dozen billion Internet of Things (IoT) connections in the future as the number of connected IoT devices grows rapidly. Due to characteristics like low power consumption and extensive coverage, low-power wide area networks (LPWANs) have become particularly relevant for the new paradigm. Long range wide area network (LoRaWAN) is one of the most alluring technological advances in these networks. Although it is one of the most developed LPWAN platforms, there are still unresolved issues, such as capacity limitations. Hence, this research introduces a novel resource scheduling technique for the LoRAWAN network using deep reinforcement learning. Here, the information on the LoRaWAN nodes is learned by the reinforcement technique, and the knowledge is utilized to allocate resources to improve the packet delivery ratio (PDR) performance through a proposed coati optimal Q-reinforcement learning (CO_QRL) model. Here, Q-reinforcement learning is utilized to learn the information about nodes, and the coati optimization algorithm (COA) helps to choose the optimal action for enhancing the reward. In the proposed scheduling algorithm, the weighted sum of successfully received packets is treated as a reward, and the server allocates resources to maximize this Q-reward. The evaluation of the proposed method based on PDR, packet success ratio (PSR), packet collision rate (PCR), time, delay, and energy accomplished the values of 0.917, 0.759, 0.253, 85, 0.029, 7.89, and 10.08, respectively.
期刊介绍:
The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues.
The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered:
-Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.)
-System control, network/service management
-Network and Internet protocols and standards
-Client-server, distributed and Web-based communication systems
-Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity
-Trials of advanced systems and services; their implementation and evaluation
-Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation
-Performance evaluation issues and methods.