An efficient resource scheduling mechanism in LoRaWAN environment using coati optimal Q‐reinforcement learning

IF 1.7 4区 计算机科学 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC International Journal of Communication Systems Pub Date : 2024-08-22 DOI:10.1002/dac.5965
J Uma Mahesh, Judhistir Mahapatro
{"title":"An efficient resource scheduling mechanism in LoRaWAN environment using coati optimal Q‐reinforcement learning","authors":"J Uma Mahesh, Judhistir Mahapatro","doi":"10.1002/dac.5965","DOIUrl":null,"url":null,"abstract":"SummaryIt is estimated that there will be over two dozen billion Internet of Things (IoT) connections in the future as the number of connected IoT devices grows rapidly. Due to characteristics like low power consumption and extensive coverage, low‐power wide area networks (LPWANs) have become particularly relevant for the new paradigm. Long range wide area network (LoRaWAN) is one of the most alluring technological advances in these networks. Although it is one of the most developed LPWAN platforms, there are still unresolved issues, such as capacity limitations. Hence, this research introduces a novel resource scheduling technique for the LoRAWAN network using deep reinforcement learning. Here, the information on the LoRaWAN nodes is learned by the reinforcement technique, and the knowledge is utilized to allocate resources to improve the packet delivery ratio (PDR) performance through a proposed coati optimal Q‐reinforcement learning (CO_QRL) model. Here, Q‐reinforcement learning is utilized to learn the information about nodes, and the coati optimization algorithm (COA) helps to choose the optimal action for enhancing the reward. In the proposed scheduling algorithm, the weighted sum of successfully received packets is treated as a reward, and the server allocates resources to maximize this Q‐reward. The evaluation of the proposed method based on PDR, packet success ratio (PSR), packet collision rate (PCR), time, delay, and energy accomplished the values of 0.917, 0.759, 0.253, 85, 0.029, 7.89, and 10.08, respectively.","PeriodicalId":13946,"journal":{"name":"International Journal of Communication Systems","volume":null,"pages":null},"PeriodicalIF":1.7000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Communication Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1002/dac.5965","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

SummaryIt is estimated that there will be over two dozen billion Internet of Things (IoT) connections in the future as the number of connected IoT devices grows rapidly. Due to characteristics like low power consumption and extensive coverage, low‐power wide area networks (LPWANs) have become particularly relevant for the new paradigm. Long range wide area network (LoRaWAN) is one of the most alluring technological advances in these networks. Although it is one of the most developed LPWAN platforms, there are still unresolved issues, such as capacity limitations. Hence, this research introduces a novel resource scheduling technique for the LoRAWAN network using deep reinforcement learning. Here, the information on the LoRaWAN nodes is learned by the reinforcement technique, and the knowledge is utilized to allocate resources to improve the packet delivery ratio (PDR) performance through a proposed coati optimal Q‐reinforcement learning (CO_QRL) model. Here, Q‐reinforcement learning is utilized to learn the information about nodes, and the coati optimization algorithm (COA) helps to choose the optimal action for enhancing the reward. In the proposed scheduling algorithm, the weighted sum of successfully received packets is treated as a reward, and the server allocates resources to maximize this Q‐reward. The evaluation of the proposed method based on PDR, packet success ratio (PSR), packet collision rate (PCR), time, delay, and energy accomplished the values of 0.917, 0.759, 0.253, 85, 0.029, 7.89, and 10.08, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LoRaWAN 环境中的高效资源调度机制(使用 coati 最佳 Q 强化学习法
摘要 随着联网物联网设备数量的快速增长,预计未来物联网(IoT)连接数将超过 200 亿。低功耗广域网(LPWAN)具有功耗低、覆盖范围广等特点,因此在新模式下显得尤为重要。长距离广域网(LoRaWAN)是这些网络中最诱人的技术进步之一。虽然它是最发达的 LPWAN 平台之一,但仍存在一些尚未解决的问题,如容量限制。因此,本研究利用深度强化学习为 LoRAWAN 网络引入了一种新型资源调度技术。在这里,通过强化技术学习 LoRaWAN 节点的信息,并利用这些知识来分配资源,从而通过提出的 coati 最佳 Q 强化学习(CO_QRL)模型提高数据包传输率(PDR)性能。在这里,Q 强化学习被用来学习节点信息,而 coati 优化算法(COA)则帮助选择最优行动以提高奖励。在所提出的调度算法中,成功接收的数据包的加权和被视为一种奖励,服务器分配资源以最大化这种 Q 奖励。根据 PDR、数据包成功率 (PSR)、数据包碰撞率 (PCR)、时间、延迟和能量对所提方法进行了评估,结果分别为 0.917、0.759、0.253、85、0.029、7.89 和 10.08。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.90
自引率
9.50%
发文量
323
审稿时长
7.9 months
期刊介绍: The International Journal of Communication Systems provides a forum for R&D, open to researchers from all types of institutions and organisations worldwide, aimed at the increasingly important area of communication technology. The Journal''s emphasis is particularly on the issues impacting behaviour at the system, service and management levels. Published twelve times a year, it provides coverage of advances that have a significant potential to impact the immense technical and commercial opportunities in the communications sector. The International Journal of Communication Systems strives to select a balance of contributions that promotes technical innovation allied to practical relevance across the range of system types and issues. The Journal addresses both public communication systems (Telecommunication, mobile, Internet, and Cable TV) and private systems (Intranets, enterprise networks, LANs, MANs, WANs). The following key areas and issues are regularly covered: -Transmission/Switching/Distribution technologies (ATM, SDH, TCP/IP, routers, DSL, cable modems, VoD, VoIP, WDM, etc.) -System control, network/service management -Network and Internet protocols and standards -Client-server, distributed and Web-based communication systems -Broadband and multimedia systems and applications, with a focus on increased service variety and interactivity -Trials of advanced systems and services; their implementation and evaluation -Novel concepts and improvements in technique; their theoretical basis and performance analysis using measurement/testing, modelling and simulation -Performance evaluation issues and methods.
期刊最新文献
Implementation of optimal routing in heterogeneous wireless sensor network with multi‐channel Media Access Control protocol using Enhanced Henry Gas Solubility Optimizer Collision detection and mitigation based on optimization and Kronecker recurrent neural network in WSN Dual‐port circular patch antenna array: Enhancing gain and minimizing cross‐polarization for mm‐wave 5G networks Performance enhancement in hybrid SDN using advanced deep learning with multi‐objective optimization frameworks under heterogeneous environments Enhanced capacitated next controller placement in software‐defined network with modified capacity constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1