{"title":"Saroglitazar Enhances Memory Functions and Adult Neurogenesis via Up-Regulation of Wnt/β Catenin Signaling in the Rat Model of Dementia","authors":"Sandeep Kumar Mishra, Vaibhav Mishra","doi":"10.1021/acschemneuro.4c00167","DOIUrl":null,"url":null,"abstract":"Peroxisome proliferator-activated receptors (PPARs) have emerged as a promising target for the treatment of various neurodegenerative disorders. Studies have shown that both PPAR α & γ individually modulate various pathophysiological events like neuroinflammation and insulin resistance, which are known to variedly affect neurogenesis. Our study aimed to evaluate the effect of saroglitazar (SGZR), a dual PPAR agonist, on adult neurogenesis and spatial learning and memory, in intracerebroventricular streptozotocin (ICV STZ)-induced dementia in rats. We have found that SGZR at the dose of 4 mg/kg per oral showed significant improvement in learning and memory compared to ICV STZ-treated rats. A substantial increase in neurogenesis was observed in the subventricular zone (SVZ) and the dentate gyrus (DG), as indicated by an increase in the number of 5-bromo-2′-deoxyuridine (BrdU)<sup>+</sup> cells, BrdU<sup>+</sup> nestin<sup>+</sup> cells, and doublecortin (DCX)<sup>+</sup>cells. Treatment with SGZR also decreased the active form of glycogen synthase kinase 3β (GSK3β) and hence enhanced the nuclear translocation of the β-catenin. Enhanced expression of Wnt transcription factors and target genes indicates that the up-regulation of Wnt signaling might be involved in the observed increase in neurogenesis. Hence, it can be concluded that the SGZR enhances memory functions and adult neurogenesis via the upregulation of Wnt β-catenin signaling in ICV STZ-treated rats.","PeriodicalId":13,"journal":{"name":"ACS Chemical Neuroscience","volume":null,"pages":null},"PeriodicalIF":4.1000,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Chemical Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acschemneuro.4c00167","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Peroxisome proliferator-activated receptors (PPARs) have emerged as a promising target for the treatment of various neurodegenerative disorders. Studies have shown that both PPAR α & γ individually modulate various pathophysiological events like neuroinflammation and insulin resistance, which are known to variedly affect neurogenesis. Our study aimed to evaluate the effect of saroglitazar (SGZR), a dual PPAR agonist, on adult neurogenesis and spatial learning and memory, in intracerebroventricular streptozotocin (ICV STZ)-induced dementia in rats. We have found that SGZR at the dose of 4 mg/kg per oral showed significant improvement in learning and memory compared to ICV STZ-treated rats. A substantial increase in neurogenesis was observed in the subventricular zone (SVZ) and the dentate gyrus (DG), as indicated by an increase in the number of 5-bromo-2′-deoxyuridine (BrdU)+ cells, BrdU+ nestin+ cells, and doublecortin (DCX)+cells. Treatment with SGZR also decreased the active form of glycogen synthase kinase 3β (GSK3β) and hence enhanced the nuclear translocation of the β-catenin. Enhanced expression of Wnt transcription factors and target genes indicates that the up-regulation of Wnt signaling might be involved in the observed increase in neurogenesis. Hence, it can be concluded that the SGZR enhances memory functions and adult neurogenesis via the upregulation of Wnt β-catenin signaling in ICV STZ-treated rats.
期刊介绍:
ACS Chemical Neuroscience publishes high-quality research articles and reviews that showcase chemical, quantitative biological, biophysical and bioengineering approaches to the understanding of the nervous system and to the development of new treatments for neurological disorders. Research in the journal focuses on aspects of chemical neurobiology and bio-neurochemistry such as the following:
Neurotransmitters and receptors
Neuropharmaceuticals and therapeutics
Neural development—Plasticity, and degeneration
Chemical, physical, and computational methods in neuroscience
Neuronal diseases—basis, detection, and treatment
Mechanism of aging, learning, memory and behavior
Pain and sensory processing
Neurotoxins
Neuroscience-inspired bioengineering
Development of methods in chemical neurobiology
Neuroimaging agents and technologies
Animal models for central nervous system diseases
Behavioral research