Dual-task enhanced global–local temporal–spatial network for depression recognition from facial videos

IF 1.5 4区 计算机科学 Q3 COMPUTER SCIENCE, SOFTWARE ENGINEERING Concurrency and Computation-Practice & Experience Pub Date : 2024-08-21 DOI:10.1002/cpe.8255
Jinjie Shen, Jing Wu, Yan Xing, Min Hu, Xiaohua Wang, Daolun Li, Wenshu Zha
{"title":"Dual-task enhanced global–local temporal–spatial network for depression recognition from facial videos","authors":"Jinjie Shen,&nbsp;Jing Wu,&nbsp;Yan Xing,&nbsp;Min Hu,&nbsp;Xiaohua Wang,&nbsp;Daolun Li,&nbsp;Wenshu Zha","doi":"10.1002/cpe.8255","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>In previous studies on facial video depression recognition, although convolutional neural network (CNN) has become a mainstream method, its performance still has room for improvement due to the insufficient extraction of global and local information and the neglect of the correlation of temporal and spatial information. This paper proposes a novel dual-task enhanced global–local temporal–spatial network (DTE-GLTS) to enhance the extraction capability of global and local features and deepen the analysis of temporal–spatial information correlation. We design a dual-task learning mode that utilizes the data-efficient image transformer (Deit) as the main body to learn the global features of video sequences and guides Deit to learn local features with the pre-trained temporal–spatial fusion network (TSF). In addition, we propose the TSF mechanism to more effectively fuse temporal–spatial information in video sequences, strengthen the correlation between frames and pixels, and embed it in Resnet to form the TSF network. To the best of our knowledge, this is the first application of Deit and dual-task learning mode in the field of facial video depression recognition. The experimental results on AVEC 2013 and AVEC 2014 show that our method achieves competitive performance, with mean absolute error/root mean square error (MAE/RMSE) scores of 6.06/7.73 and 5.91/7.68, respectively, while significantly reducing the number of parameters.</p>\n </div>","PeriodicalId":55214,"journal":{"name":"Concurrency and Computation-Practice & Experience","volume":"36 25","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Concurrency and Computation-Practice & Experience","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/cpe.8255","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, SOFTWARE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

In previous studies on facial video depression recognition, although convolutional neural network (CNN) has become a mainstream method, its performance still has room for improvement due to the insufficient extraction of global and local information and the neglect of the correlation of temporal and spatial information. This paper proposes a novel dual-task enhanced global–local temporal–spatial network (DTE-GLTS) to enhance the extraction capability of global and local features and deepen the analysis of temporal–spatial information correlation. We design a dual-task learning mode that utilizes the data-efficient image transformer (Deit) as the main body to learn the global features of video sequences and guides Deit to learn local features with the pre-trained temporal–spatial fusion network (TSF). In addition, we propose the TSF mechanism to more effectively fuse temporal–spatial information in video sequences, strengthen the correlation between frames and pixels, and embed it in Resnet to form the TSF network. To the best of our knowledge, this is the first application of Deit and dual-task learning mode in the field of facial video depression recognition. The experimental results on AVEC 2013 and AVEC 2014 show that our method achieves competitive performance, with mean absolute error/root mean square error (MAE/RMSE) scores of 6.06/7.73 and 5.91/7.68, respectively, while significantly reducing the number of parameters.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于从面部视频识别抑郁的全局-局部时空双任务增强网络
摘要 在以往的人脸视频凹陷识别研究中,虽然卷积神经网络(CNN)已成为一种主流方法,但由于对全局和局部信息提取不足,且忽视了时空信息的关联性,其性能仍有提升空间。本文提出了一种新颖的双任务增强型全局-局部时空网络(DTE-GLTS),以增强对全局和局部特征的提取能力,深化对时空信息相关性的分析。我们设计了一种双任务学习模式,即以数据高效图像转换器(Deit)为主体学习视频序列的全局特征,并通过预训练的时空融合网络(TSF)引导 Deit 学习局部特征。此外,我们还提出了 TSF 机制,以更有效地融合视频序列中的时空信息,加强帧与像素之间的相关性,并将其嵌入 Resnet 以形成 TSF 网络。据我们所知,这是 Deit 和双任务学习模式在面部视频凹陷识别领域的首次应用。在 AVEC 2013 和 AVEC 2014 上的实验结果表明,我们的方法取得了具有竞争力的性能,平均绝对误差/均方根误差(MAE/RMSE)分别为 6.06/7.73 和 5.91/7.68,同时显著减少了参数数量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Concurrency and Computation-Practice & Experience
Concurrency and Computation-Practice & Experience 工程技术-计算机:理论方法
CiteScore
5.00
自引率
10.00%
发文量
664
审稿时长
9.6 months
期刊介绍: Concurrency and Computation: Practice and Experience (CCPE) publishes high-quality, original research papers, and authoritative research review papers, in the overlapping fields of: Parallel and distributed computing; High-performance computing; Computational and data science; Artificial intelligence and machine learning; Big data applications, algorithms, and systems; Network science; Ontologies and semantics; Security and privacy; Cloud/edge/fog computing; Green computing; and Quantum computing.
期刊最新文献
Issue Information Improving QoS in cloud resources scheduling using dynamic clustering algorithm and SM-CDC scheduling model Issue Information Issue Information Camellia oleifera trunks detection and identification based on improved YOLOv7
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1