Predicting Electricity Consumption with Random Walks on Gaussian Processes

Chloé Hashimoto-Cullen, Benjamin Guedj
{"title":"Predicting Electricity Consumption with Random Walks on Gaussian Processes","authors":"Chloé Hashimoto-Cullen, Benjamin Guedj","doi":"arxiv-2409.05934","DOIUrl":null,"url":null,"abstract":"We consider time-series forecasting problems where data is scarce, difficult\nto gather, or induces a prohibitive computational cost. As a first attempt, we\nfocus on short-term electricity consumption in France, which is of strategic\nimportance for energy suppliers and public stakeholders. The complexity of this\nproblem and the many levels of geospatial granularity motivate the use of an\nensemble of Gaussian Processes (GPs). Whilst GPs are remarkable predictors,\nthey are computationally expensive to train, which calls for a frugal few-shot\nlearning approach. By taking into account performance on GPs trained on a\ndataset and designing a random walk on these, we mitigate the training cost of\nour entire Bayesian decision-making procedure. We introduce our algorithm\ncalled \\textsc{Domino} (ranDOM walk on gaussIaN prOcesses) and present\nnumerical experiments to support its merits.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"16 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05934","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We consider time-series forecasting problems where data is scarce, difficult to gather, or induces a prohibitive computational cost. As a first attempt, we focus on short-term electricity consumption in France, which is of strategic importance for energy suppliers and public stakeholders. The complexity of this problem and the many levels of geospatial granularity motivate the use of an ensemble of Gaussian Processes (GPs). Whilst GPs are remarkable predictors, they are computationally expensive to train, which calls for a frugal few-shot learning approach. By taking into account performance on GPs trained on a dataset and designing a random walk on these, we mitigate the training cost of our entire Bayesian decision-making procedure. We introduce our algorithm called \textsc{Domino} (ranDOM walk on gaussIaN prOcesses) and present numerical experiments to support its merits.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用高斯过程的随机漫步预测用电量
我们考虑的是数据稀缺、难以收集或计算成本过高的时间序列预测问题。作为首次尝试,我们将重点放在法国的短期用电量上,这对能源供应商和公共利益相关者来说具有重要的战略意义。这一问题的复杂性和多级地理空间粒度促使我们使用高斯过程(GPs)组合。虽然 GPs 是出色的预测工具,但其训练的计算成本很高,因此需要一种节俭的少量学习方法。通过考虑在数据集上训练的 GPs 的性能,并在这些 GPs 上设计随机行走,我们减轻了整个贝叶斯决策过程的训练成本。我们介绍了我们的算法,称为textsc{Domino}(ranDOM walk on gaussIaN prOcesses),并通过数值实验来证明它的优点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1