Inference for Large Scale Regression Models with Dependent Errors

Lionel Voirol, Haotian Xu, Yuming Zhang, Luca Insolia, Roberto Molinari, Stéphane Guerrier
{"title":"Inference for Large Scale Regression Models with Dependent Errors","authors":"Lionel Voirol, Haotian Xu, Yuming Zhang, Luca Insolia, Roberto Molinari, Stéphane Guerrier","doi":"arxiv-2409.05160","DOIUrl":null,"url":null,"abstract":"The exponential growth in data sizes and storage costs has brought\nconsiderable challenges to the data science community, requiring solutions to\nrun learning methods on such data. While machine learning has scaled to achieve\npredictive accuracy in big data settings, statistical inference and uncertainty\nquantification tools are still lagging. Priority scientific fields collect vast\ndata to understand phenomena typically studied with statistical methods like\nregression. In this setting, regression parameter estimation can benefit from\nefficient computational procedures, but the main challenge lies in computing\nerror process parameters with complex covariance structures. Identifying and\nestimating these structures is essential for inference and often used for\nuncertainty quantification in machine learning with Gaussian Processes.\nHowever, estimating these structures becomes burdensome as data scales,\nrequiring approximations that compromise the reliability of outputs. These\napproximations are even more unreliable when complexities like long-range\ndependencies or missing data are present. This work defines and proves the\nstatistical properties of the Generalized Method of Wavelet Moments with\nExogenous variables (GMWMX), a highly scalable, stable, and statistically valid\nmethod for estimating and delivering inference for linear models using\nstochastic processes in the presence of data complexities like latent\ndependence structures and missing data. Applied examples from Earth Sciences\nand extensive simulations highlight the advantages of the GMWMX.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"1 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.05160","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The exponential growth in data sizes and storage costs has brought considerable challenges to the data science community, requiring solutions to run learning methods on such data. While machine learning has scaled to achieve predictive accuracy in big data settings, statistical inference and uncertainty quantification tools are still lagging. Priority scientific fields collect vast data to understand phenomena typically studied with statistical methods like regression. In this setting, regression parameter estimation can benefit from efficient computational procedures, but the main challenge lies in computing error process parameters with complex covariance structures. Identifying and estimating these structures is essential for inference and often used for uncertainty quantification in machine learning with Gaussian Processes. However, estimating these structures becomes burdensome as data scales, requiring approximations that compromise the reliability of outputs. These approximations are even more unreliable when complexities like long-range dependencies or missing data are present. This work defines and proves the statistical properties of the Generalized Method of Wavelet Moments with Exogenous variables (GMWMX), a highly scalable, stable, and statistically valid method for estimating and delivering inference for linear models using stochastic processes in the presence of data complexities like latent dependence structures and missing data. Applied examples from Earth Sciences and extensive simulations highlight the advantages of the GMWMX.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
具有依赖误差的大规模回归模型推理
数据规模和存储成本的指数级增长给数据科学界带来了相当大的挑战,需要在这些数据上运行学习方法的解决方案。虽然机器学习已经可以在大数据环境中实现预测准确性,但统计推理和不确定性量化工具仍然滞后。重点科学领域收集大量数据,以了解通常使用回归等统计方法研究的现象。在这种情况下,回归参数估计可以受益于高效的计算程序,但主要挑战在于计算具有复杂协方差结构的错误过程参数。识别和估计这些结构对推理至关重要,在使用高斯过程的机器学习中,经常用于不确定性量化。然而,随着数据规模的扩大,估计这些结构变得非常繁琐,需要进行近似,从而影响输出的可靠性。然而,随着数据规模的扩大,估算这些结构变得非常繁琐,需要使用近似值来影响输出的可靠性。如果存在长距离依赖或数据缺失等复杂情况,这些近似值就更加不可靠了。这项工作定义并证明了具有外生变量的广义小波矩量法(GMWMX)的统计特性,这是一种高度可扩展、稳定和统计有效的方法,用于在存在数据复杂性(如潜在依赖结构和缺失数据)的情况下,使用随机过程对线性模型进行估计和推理。来自地球科学的应用实例和大量模拟突出了 GMWMX 的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1