Forecasting Age Distribution of Deaths: Cumulative Distribution Function Transformation

Han Lin Shang, Steven Haberman
{"title":"Forecasting Age Distribution of Deaths: Cumulative Distribution Function Transformation","authors":"Han Lin Shang, Steven Haberman","doi":"arxiv-2409.04981","DOIUrl":null,"url":null,"abstract":"Like density functions, period life-table death counts are nonnegative and\nhave a constrained integral, and thus live in a constrained nonlinear space.\nImplementing established modelling and forecasting methods without obeying\nthese constraints can be problematic for such nonlinear data. We introduce\ncumulative distribution function transformation to forecast the life-table\ndeath counts. Using the Japanese life-table death counts obtained from the\nJapanese Mortality Database (2024), we evaluate the point and interval forecast\naccuracies of the proposed approach, which compares favourably to an existing\ncompositional data analytic approach. The improved forecast accuracy of\nlife-table death counts is of great interest to demographers for estimating\nage-specific survival probabilities and life expectancy and actuaries for\ndetermining temporary annuity prices for different ages and maturities.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"192 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04981","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Like density functions, period life-table death counts are nonnegative and have a constrained integral, and thus live in a constrained nonlinear space. Implementing established modelling and forecasting methods without obeying these constraints can be problematic for such nonlinear data. We introduce cumulative distribution function transformation to forecast the life-table death counts. Using the Japanese life-table death counts obtained from the Japanese Mortality Database (2024), we evaluate the point and interval forecast accuracies of the proposed approach, which compares favourably to an existing compositional data analytic approach. The improved forecast accuracy of life-table death counts is of great interest to demographers for estimating age-specific survival probabilities and life expectancy and actuaries for determining temporary annuity prices for different ages and maturities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
预测死亡年龄分布:累积分布函数变换
与密度函数一样,周期生命表死亡人数也是非负的,并且具有一个受约束的积分,因此存在于一个受约束的非线性空间中。我们引入累积分布函数变换来预测生命表死亡数。利用从日本死亡率数据库(2024 年)中获得的日本生命表死亡人数,我们评估了所提出方法的点和区间预测误差,其结果优于现有的组合数据分析方法。生命表死亡人数预测准确性的提高对人口学家估计特定年龄的生存概率和预期寿命以及精算师确定不同年龄和期限的临时年金价格具有重大意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1