Spatial Interference Detection in Treatment Effect Model

Wei Zhang, Fang Yao, Ying Yang
{"title":"Spatial Interference Detection in Treatment Effect Model","authors":"Wei Zhang, Fang Yao, Ying Yang","doi":"arxiv-2409.04836","DOIUrl":null,"url":null,"abstract":"Modeling the interference effect is an important issue in the field of causal\ninference. Existing studies rely on explicit and often homogeneous assumptions\nregarding interference structures. In this paper, we introduce a low-rank and\nsparse treatment effect model that leverages data-driven techniques to identify\nthe locations of interference effects. A profiling algorithm is proposed to\nestimate the model coefficients, and based on these estimates, global test and\nlocal detection methods are established to detect the existence of interference\nand the interference neighbor locations for each unit. We derive the\nnon-asymptotic bound of the estimation error, and establish theoretical\nguarantees for the global test and the accuracy of the detection method in\nterms of Jaccard index. Simulations and real data examples are provided to\ndemonstrate the usefulness of the proposed method.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04836","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Modeling the interference effect is an important issue in the field of causal inference. Existing studies rely on explicit and often homogeneous assumptions regarding interference structures. In this paper, we introduce a low-rank and sparse treatment effect model that leverages data-driven techniques to identify the locations of interference effects. A profiling algorithm is proposed to estimate the model coefficients, and based on these estimates, global test and local detection methods are established to detect the existence of interference and the interference neighbor locations for each unit. We derive the non-asymptotic bound of the estimation error, and establish theoretical guarantees for the global test and the accuracy of the detection method in terms of Jaccard index. Simulations and real data examples are provided to demonstrate the usefulness of the proposed method.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
治疗效果模型中的空间干扰检测
建立干扰效应模型是因果推断领域的一个重要问题。现有的研究依赖于明确的、通常是同质的干扰结构假设。在本文中,我们引入了一种低秩和稀疏的治疗效果模型,利用数据驱动技术来确定干扰效应的位置。我们提出了一种剖析算法来估算模型系数,并基于这些估算建立了全局测试和局部检测方法,以检测干扰的存在和每个单元的干扰邻域位置。我们推导出了估计误差的近似边界,并为全局检验和检测方法的准确性建立了与 Jaccard 指数相关的理论保证。我们还提供了模拟和真实数据实例,以证明所提方法的实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1