Fitting the Discrete Swept Skeletal Representation to Slabular Objects

Mohsen Taheri, Stephen M. Pizer, Jörn Schulz
{"title":"Fitting the Discrete Swept Skeletal Representation to Slabular Objects","authors":"Mohsen Taheri, Stephen M. Pizer, Jörn Schulz","doi":"arxiv-2409.04079","DOIUrl":null,"url":null,"abstract":"Statistical shape analysis of slabular objects like groups of hippocampi is\nhighly useful for medical researchers as it can be useful for diagnoses and\nunderstanding diseases. This work proposes a novel object representation based\non locally parameterized discrete swept skeletal structures. Further, model\nfitting and analysis of such representations are discussed. The model fitting\nprocedure is based on boundary division and surface flattening. The quality of\nthe model fitting is evaluated based on the symmetry and tidiness of the\nskeletal structure as well as the volume of the implied boundary. The power of\nthe method is demonstrated by visual inspection and statistical analysis of a\nsynthetic and an actual data set in comparison with an available skeletal\nrepresentation.","PeriodicalId":501425,"journal":{"name":"arXiv - STAT - Methodology","volume":"67 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - STAT - Methodology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Statistical shape analysis of slabular objects like groups of hippocampi is highly useful for medical researchers as it can be useful for diagnoses and understanding diseases. This work proposes a novel object representation based on locally parameterized discrete swept skeletal structures. Further, model fitting and analysis of such representations are discussed. The model fitting procedure is based on boundary division and surface flattening. The quality of the model fitting is evaluated based on the symmetry and tidiness of the skeletal structure as well as the volume of the implied boundary. The power of the method is demonstrated by visual inspection and statistical analysis of a synthetic and an actual data set in comparison with an available skeletal representation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
将离散扫掠骨骼表示法拟合到板状物体上
板状物体(如海马群)的统计形状分析对医学研究人员非常有用,因为它有助于诊断和了解疾病。本研究提出了一种基于局部参数化离散扫掠骨骼结构的新型物体表示法。此外,还讨论了这种表示的模型拟合和分析。模型拟合过程基于边界划分和表面平坦化。根据骨骼结构的对称性和整齐度以及隐含边界的体积来评估模型拟合的质量。通过对合成数据集和实际数据集进行目测和统计分析,并与现有的骨骼描述进行比较,证明了该方法的强大功能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
相关文献
Big Building Data - a Big Data Platform for Smart Buildings
IF 0 Energy ProcediaPub Date : 2017-09-01 DOI: 10.1016/j.egypro.2017.07.354
Lucy Linder , Damien Vionnet , Jean-Philippe Bacher , Jean Hennebert
Big Building Data 2.0 - a Big Data Platform for Smart Buildings
IF 0 Journal of Physics: Conference SeriesPub Date : 2021-11-01 DOI: 10.1088/1742-6596/2042/1/012016
Lucy Linder, Frédéric Montet, J. Hennebert, J. Bacher
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poisson approximate likelihood compared to the particle filter Optimising the Trade-Off Between Type I and Type II Errors: A Review and Extensions Bias Reduction in Matched Observational Studies with Continuous Treatments: Calipered Non-Bipartite Matching and Bias-Corrected Estimation and Inference Forecasting age distribution of life-table death counts via α-transformation Probability-scale residuals for event-time data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1