Correlations for the Viscosity and Thermal Conductivity of Tetrahydrofuran

IF 2.5 4区 工程技术 Q3 CHEMISTRY, PHYSICAL International Journal of Thermophysics Pub Date : 2024-08-17 DOI:10.1007/s10765-024-03415-2
Sofia G. Sotiriadou, Eleftheria Ntonti, Marc J. Assael, Konstantinos D. Antoniadis, Marcia L. Huber
{"title":"Correlations for the Viscosity and Thermal Conductivity of Tetrahydrofuran","authors":"Sofia G. Sotiriadou,&nbsp;Eleftheria Ntonti,&nbsp;Marc J. Assael,&nbsp;Konstantinos D. Antoniadis,&nbsp;Marcia L. Huber","doi":"10.1007/s10765-024-03415-2","DOIUrl":null,"url":null,"abstract":"<div><p>We present hybrid predictive-correlative engineering correlations for the calculation of the viscosity and thermal conductivity of tetrahydrofuran (THF) in the fluid phase. They incorporate critically evaluated experimental data where available, and predictive methods in regions where there are no data and can be applied over the gas, liquid, and supercritical phases. The viscosity correlation is validated from 195 K to 353 K, and up to 30 MPa pressure, while the thermal conductivity is validated in the temperature range 174 K to 332 K, and up to 110 MPa pressure. Both correlations are designed to be used with a recently published equation of state that extends from the triple point to 550 K, at pressures up to 600 MPa. The estimated uncertainty (at a 95 % confidence level) for the viscosity is 10 % for the low-density gas (up to atmospheric pressure), and 6 % for the liquid at temperatures up to 353 K and pressures up to 30 MPa. For thermal conductivity, the expanded uncertainty is estimated to be 15 % for the low-density gas, and 2 % for the liquid phase from the triple-point temperature to 330 K at pressures up to 15 MPa, rising to 4 % at 110 MPa. Due to the extremely limited data available, these correlations should be considered preliminary until further experimental data become available.</p></div>","PeriodicalId":598,"journal":{"name":"International Journal of Thermophysics","volume":"45 9","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Thermophysics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10765-024-03415-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We present hybrid predictive-correlative engineering correlations for the calculation of the viscosity and thermal conductivity of tetrahydrofuran (THF) in the fluid phase. They incorporate critically evaluated experimental data where available, and predictive methods in regions where there are no data and can be applied over the gas, liquid, and supercritical phases. The viscosity correlation is validated from 195 K to 353 K, and up to 30 MPa pressure, while the thermal conductivity is validated in the temperature range 174 K to 332 K, and up to 110 MPa pressure. Both correlations are designed to be used with a recently published equation of state that extends from the triple point to 550 K, at pressures up to 600 MPa. The estimated uncertainty (at a 95 % confidence level) for the viscosity is 10 % for the low-density gas (up to atmospheric pressure), and 6 % for the liquid at temperatures up to 353 K and pressures up to 30 MPa. For thermal conductivity, the expanded uncertainty is estimated to be 15 % for the low-density gas, and 2 % for the liquid phase from the triple-point temperature to 330 K at pressures up to 15 MPa, rising to 4 % at 110 MPa. Due to the extremely limited data available, these correlations should be considered preliminary until further experimental data become available.

Abstract Image

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
四氢呋喃粘度和导热率的相关性
我们介绍了用于计算四氢呋喃(THF)在流体相中的粘度和热导率的混合预测-相关工程相关性。它们结合了经过严格评估的可用实验数据,以及在没有数据的区域采用的预测方法,可应用于气相、液相和超临界相。粘度相关性已在 195 K 至 353 K 和高达 30 MPa 的压力范围内得到验证,而热导率已在 174 K 至 332 K 和高达 110 MPa 的压力范围内得到验证。这两种相关性设计用于最近公布的状态方程,该方程从三重点延伸到 550 K,压力高达 600 MPa。在温度高达 353 K 和压力高达 30 MPa 的条件下,低密度气体粘度的估计不确定性(置信度为 95%)为 10%,液体粘度的估计不确定性为 6%。至于热导率,低密度气体的扩展不确定性估计为 15%,液相从三相点温度到 330 K、压力达 15 MPa 时的扩展不确定性为 2%,在 110 MPa 时上升到 4%。由于可用数据极其有限,在获得更多实验数据之前,这些相关性应被视为初步的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.10
自引率
9.10%
发文量
179
审稿时长
5 months
期刊介绍: International Journal of Thermophysics serves as an international medium for the publication of papers in thermophysics, assisting both generators and users of thermophysical properties data. This distinguished journal publishes both experimental and theoretical papers on thermophysical properties of matter in the liquid, gaseous, and solid states (including soft matter, biofluids, and nano- and bio-materials), on instrumentation and techniques leading to their measurement, and on computer studies of model and related systems. Studies in all ranges of temperature, pressure, wavelength, and other relevant variables are included.
期刊最新文献
Correction: Nanoporous Film Layers to Enhance the Performance of Passive Radiative Cooling Paint Mixtures Enhancement in Active Thermal Management Efficiency of Micro/Mini-Pipes Based on Phase Change to Consider Pressure Drop A Composite Microwave Cavity for Liquid Volume Fraction and Simultaneous Phase Permittivity Measurements Thermal Conductivity Characterization of High Oleic Vegetable Oils Based Hybrid Nanofluids Formulated Using GnP, TiO2, MoS2, Al2O3 Nanoparticles for MQL Machining Thermophysical and Chemical Characteristics of a Biosourced Composite Material Developed to Enhance the Thermal Inertia of Building Walls in Arid Climates
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1