{"title":"Roots of unity and higher ramification in iterated extensions","authors":"Spencer Hamblen, Rafe Jones","doi":"10.1090/proc/16825","DOIUrl":null,"url":null,"abstract":"<p>Given a field <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, a rational function <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi element-of upper K left-parenthesis x right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>ϕ</mml:mi> <mml:mo>∈</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\phi \\in K(x)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and a point <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"b element-of double-struck upper P Superscript 1 Baseline left-parenthesis upper K right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>b</mml:mi> <mml:mo>∈</mml:mo> <mml:msup> <mml:mrow> <mml:mi mathvariant=\"double-struck\">P</mml:mi> </mml:mrow> <mml:mn>1</mml:mn> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">b \\in \\mathbb {P}^1(K)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, we study the extension <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K left-parenthesis phi Superscript negative normal infinity Baseline left-parenthesis b right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K(\\phi ^{-\\infty }(b))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> generated by the union over <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of all solutions to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi Superscript n Baseline left-parenthesis x right-parenthesis equals b\"> <mml:semantics> <mml:mrow> <mml:msup> <mml:mi>ϕ</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>x</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo>=</mml:mo> <mml:mi>b</mml:mi> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">\\phi ^n(x) = b</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, where <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi Superscript n\"> <mml:semantics> <mml:msup> <mml:mi>ϕ</mml:mi> <mml:mi>n</mml:mi> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\phi ^n</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is the <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"n\"> <mml:semantics> <mml:mi>n</mml:mi> <mml:annotation encoding=\"application/x-tex\">n</mml:annotation> </mml:semantics> </mml:math> </inline-formula>th iterate of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. We ask when a finite extension of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K left-parenthesis phi Superscript negative normal infinity Baseline left-parenthesis b right-parenthesis right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>K</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>ϕ</mml:mi> <mml:mrow> <mml:mo>−</mml:mo> <mml:mi mathvariant=\"normal\">∞</mml:mi> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>b</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">K(\\phi ^{-\\infty }(b))</mml:annotation> </mml:semantics> </mml:math> </inline-formula> can contain all <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m\"> <mml:semantics> <mml:mi>m</mml:mi> <mml:annotation encoding=\"application/x-tex\">m</mml:annotation> </mml:semantics> </mml:math> </inline-formula>-power roots of unity for some <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"m greater-than-or-equal-to 2\"> <mml:semantics> <mml:mrow> <mml:mi>m</mml:mi> <mml:mo>≥</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">m \\geq 2</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, and prove that this occurs for several families of rational functions. A motivating application is to understand the higher ramification filtration when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper K\"> <mml:semantics> <mml:mi>K</mml:mi> <mml:annotation encoding=\"application/x-tex\">K</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is a finite extension of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper Q Subscript p\"> <mml:semantics> <mml:msub> <mml:mrow> <mml:mi mathvariant=\"double-struck\">Q</mml:mi> </mml:mrow> <mml:mi>p</mml:mi> </mml:msub> <mml:annotation encoding=\"application/x-tex\">\\mathbb {Q}_p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> and <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"p\"> <mml:semantics> <mml:mi>p</mml:mi> <mml:annotation encoding=\"application/x-tex\">p</mml:annotation> </mml:semantics> </mml:math> </inline-formula> divides the degree of <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, especially when <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"phi\"> <mml:semantics> <mml:mi>ϕ</mml:mi> <mml:annotation encoding=\"application/x-tex\">\\phi</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is post-critically finite (PCF). We show that all higher ramification groups are infinite for new families of iterated extensions, for example those given by bicritical rational functions with periodic critical points. We also give new examples of iterated extensions with subextensions satisfying an even stronger ramification-theoretic condition called arithmetic profiniteness. We conjecture that every iterated extension arising from a PCF map should have a subextension with this stronger property, which would give a dynamical analogue of Sen’s theorem for PCF maps.</p>","PeriodicalId":20696,"journal":{"name":"Proceedings of the American Mathematical Society","volume":"68 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-03-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the American Mathematical Society","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1090/proc/16825","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0
Abstract
Given a field KK, a rational function ϕ∈K(x)\phi \in K(x), and a point b∈P1(K)b \in \mathbb {P}^1(K), we study the extension K(ϕ−∞(b))K(\phi ^{-\infty }(b)) generated by the union over nn of all solutions to ϕn(x)=b\phi ^n(x) = b, where ϕn\phi ^n is the nnth iterate of ϕ\phi. We ask when a finite extension of K(ϕ−∞(b))K(\phi ^{-\infty }(b)) can contain all mm-power roots of unity for some m≥2m \geq 2, and prove that this occurs for several families of rational functions. A motivating application is to understand the higher ramification filtration when KK is a finite extension of Qp\mathbb {Q}_p and pp divides the degree of ϕ\phi, especially when ϕ\phi is post-critically finite (PCF). We show that all higher ramification groups are infinite for new families of iterated extensions, for example those given by bicritical rational functions with periodic critical points. We also give new examples of iterated extensions with subextensions satisfying an even stronger ramification-theoretic condition called arithmetic profiniteness. We conjecture that every iterated extension arising from a PCF map should have a subextension with this stronger property, which would give a dynamical analogue of Sen’s theorem for PCF maps.
给定一个域 K K ,一个有理函数 ϕ ∈ K ( x ) \phi \in K(x) ,以及一个点 b ∈ P 1 ( K ) b \in \mathbb {P}^1(K) ,我们研究扩展 K ( ϕ - ∞ ( b ) ) K(\phi ^{-\infty }(b)) 由 ϕ n ( x ) = b \phi ^n(x) = b 的所有解的 n n 的联合产生,其中 ϕ n \phi ^n 是 ϕ \phi 的第 n 个迭代。我们问当 K ( ϕ - ∞ ( b ) ) 的有限扩展时 K(\phi ^{-\infty }(b)) 可以包含某个 m ≥ 2 m \geq 2 的所有 m m -power 单整根,并证明这发生在几个有理函数族中。一个有启发性的应用是理解当 K K 是 Q p \mathbb {Q}_p 的有限扩展且 p p 除以 ϕ \phi 的阶数时的高斜率滤波,尤其是当ϕ \phi 是后极限(PCF)时。我们证明,对于新的迭代扩展族,例如那些由具有周期临界点的双临界有理函数给出的迭代扩展族,所有较高的斜切群都是无限的。我们还给出了迭代扩展的新例子,这些迭代扩展的子扩展满足更强的夯实理论条件,即算术剖分性。我们猜想,由 PCF 映射产生的每个迭代扩展都应该有一个具有这种更强性质的子扩展,这将给出 PCF 映射的森定理的动力学类似物。
期刊介绍:
All articles submitted to this journal are peer-reviewed. The AMS has a single blind peer-review process in which the reviewers know who the authors of the manuscript are, but the authors do not have access to the information on who the peer reviewers are.
This journal is devoted to shorter research articles (not to exceed 15 printed pages) in all areas of pure and applied mathematics. To be published in the Proceedings, a paper must be correct, new, and significant. Further, it must be well written and of interest to a substantial number of mathematicians. Piecemeal results, such as an inconclusive step toward an unproved major theorem or a minor variation on a known result, are in general not acceptable for publication. Longer papers may be submitted to the Transactions of the American Mathematical Society. Published pages are the same size as those generated in the style files provided for AMS-LaTeX.