{"title":"Multi-source ensemble method with random source selection for virtual metrology","authors":"Gejia Zhang, Tianhui Wang, Jaeseung Baek, Myong-Kee Jeong, Seongho Seo, Jaekyung Choi","doi":"10.1007/s10479-024-06179-y","DOIUrl":null,"url":null,"abstract":"<p>In the era of Industry 4.0, the complexity of semiconductor production is growing very fast, raising the possibility of unnoticed defective wafers and subsequent wasteful use of resources. One of the key advantages of Industry 4.0 is the accessibility to big data, which can be obtained from a number of sensors, including multiple sensor data and extensive data repositories. Recently, engineers have developed data fusion strategies for virtual metrology (VM) prediction models to effectively handle data from multiple sources. This research explores a novel approach for data-driven VM prediction model for multi-source data, namely multi-source ensemble method with random source selection. By utilizing the bagging principle for multi-source data and tree-based prediction paradigms, the proposed approach randomly selects subsets of data sources to construct each tree learner, thus reducing interdependence among the trees and minimizing the risk of overfitting, which can be a challenge faced by existing tree-based prediction models. To validate and illustrate the practical applicability of our proposed method, we use real-world data from the plasma etching process, aiming to provide potential benefits and effectiveness of our methodology.</p>","PeriodicalId":8215,"journal":{"name":"Annals of Operations Research","volume":"45 1","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Operations Research","FirstCategoryId":"91","ListUrlMain":"https://doi.org/10.1007/s10479-024-06179-y","RegionNum":3,"RegionCategory":"管理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPERATIONS RESEARCH & MANAGEMENT SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
In the era of Industry 4.0, the complexity of semiconductor production is growing very fast, raising the possibility of unnoticed defective wafers and subsequent wasteful use of resources. One of the key advantages of Industry 4.0 is the accessibility to big data, which can be obtained from a number of sensors, including multiple sensor data and extensive data repositories. Recently, engineers have developed data fusion strategies for virtual metrology (VM) prediction models to effectively handle data from multiple sources. This research explores a novel approach for data-driven VM prediction model for multi-source data, namely multi-source ensemble method with random source selection. By utilizing the bagging principle for multi-source data and tree-based prediction paradigms, the proposed approach randomly selects subsets of data sources to construct each tree learner, thus reducing interdependence among the trees and minimizing the risk of overfitting, which can be a challenge faced by existing tree-based prediction models. To validate and illustrate the practical applicability of our proposed method, we use real-world data from the plasma etching process, aiming to provide potential benefits and effectiveness of our methodology.
期刊介绍:
The Annals of Operations Research publishes peer-reviewed original articles dealing with key aspects of operations research, including theory, practice, and computation. The journal publishes full-length research articles, short notes, expositions and surveys, reports on computational studies, and case studies that present new and innovative practical applications.
In addition to regular issues, the journal publishes periodic special volumes that focus on defined fields of operations research, ranging from the highly theoretical to the algorithmic and the applied. These volumes have one or more Guest Editors who are responsible for collecting the papers and overseeing the refereeing process.