Tiantian Shen, Shanshan Zhao, An Su, Haisheng Liu, Fayi Chen, Benchun Li, Xinxin Han, Dechao Yu, Dawei Zhang
{"title":"Visible/near-infrared luminescence and concentration effects of Pr3+-doped Sr2Al2GeO7 downconversion phosphors","authors":"Tiantian Shen, Shanshan Zhao, An Su, Haisheng Liu, Fayi Chen, Benchun Li, Xinxin Han, Dechao Yu, Dawei Zhang","doi":"10.1063/5.0226329","DOIUrl":null,"url":null,"abstract":"The Pr3+ ion has been widely doped into various materials as a red and near-infrared (NIR) emitting center for applications in lighting and solar spectrum downconversion. Herein, the preparation of a new library of Pr3+-doped Sr2Al2GeO7 phosphors was proved by powder x-ray diffraction patterns and Rietveld refinements and characterized by a scanning electron microscope with energy-dispersive x-ray spectrometry. The Sr2Al2GeO7:Pr3+ sample strongly absorbs blue photons over 420–500 nm and yields intense visible emissions with dominant peaks around 490 nm from the Pr3+ 3P0 → 3H4 transition, as well as robust NIR emission bands over 800–1200 nm. In addition to the typical transitions of 1D2 → 3F2 at 880 nm, 1G4 → 3H4 at 1000 nm, and 1D2 → 3F3,4 at 1070 nm, the distinguishable NIR emission at 929 nm was demonstrated from the 3P0 → 1G4 transition via static and dynamic spectroscopic analysis. Most interestingly, for the 3P0 blue-excited state, a considerably elevated concentration of about 10%Pr3+ was optimal for the visible/NIR emissions, in stark contrast to the diluted optimal 1%Pr3+ for the 1D2 state. The relevant cross-relaxation from the 3P0 and 1D2 states between Pr3+ was comprehensively treated by theoretical speculations and experimental results. Such concentrated Pr3+ blue activators would significantly facilitate the blue-to-NIR downconversion through a desired two-step sequential transition from the 3P0 initial state to the 1G4 intermediate level for quantum efficiency exceeding unity. The current results would consolidate the basis of concentrated Pr3+ donors to promote the novel Pr3+/Yb3+ codoping downconversion for greatly increasing Si solar cell efficiency.","PeriodicalId":7985,"journal":{"name":"APL Materials","volume":"17 1","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1063/5.0226329","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The Pr3+ ion has been widely doped into various materials as a red and near-infrared (NIR) emitting center for applications in lighting and solar spectrum downconversion. Herein, the preparation of a new library of Pr3+-doped Sr2Al2GeO7 phosphors was proved by powder x-ray diffraction patterns and Rietveld refinements and characterized by a scanning electron microscope with energy-dispersive x-ray spectrometry. The Sr2Al2GeO7:Pr3+ sample strongly absorbs blue photons over 420–500 nm and yields intense visible emissions with dominant peaks around 490 nm from the Pr3+ 3P0 → 3H4 transition, as well as robust NIR emission bands over 800–1200 nm. In addition to the typical transitions of 1D2 → 3F2 at 880 nm, 1G4 → 3H4 at 1000 nm, and 1D2 → 3F3,4 at 1070 nm, the distinguishable NIR emission at 929 nm was demonstrated from the 3P0 → 1G4 transition via static and dynamic spectroscopic analysis. Most interestingly, for the 3P0 blue-excited state, a considerably elevated concentration of about 10%Pr3+ was optimal for the visible/NIR emissions, in stark contrast to the diluted optimal 1%Pr3+ for the 1D2 state. The relevant cross-relaxation from the 3P0 and 1D2 states between Pr3+ was comprehensively treated by theoretical speculations and experimental results. Such concentrated Pr3+ blue activators would significantly facilitate the blue-to-NIR downconversion through a desired two-step sequential transition from the 3P0 initial state to the 1G4 intermediate level for quantum efficiency exceeding unity. The current results would consolidate the basis of concentrated Pr3+ donors to promote the novel Pr3+/Yb3+ codoping downconversion for greatly increasing Si solar cell efficiency.
期刊介绍:
APL Materials features original, experimental research on significant topical issues within the field of materials science. In order to highlight research at the forefront of materials science, emphasis is given to the quality and timeliness of the work. The journal considers theory or calculation when the work is particularly timely and relevant to applications.
In addition to regular articles, the journal also publishes Special Topics, which report on cutting-edge areas in materials science, such as Perovskite Solar Cells, 2D Materials, and Beyond Lithium Ion Batteries.