Estimation of the pseudoscalar glueball mass based on a modified Transformer

Lin Gao
{"title":"Estimation of the pseudoscalar glueball mass based on a modified Transformer","authors":"Lin Gao","doi":"arxiv-2408.13280","DOIUrl":null,"url":null,"abstract":"A modified Transformer model is introduced for estimating the mass of\npseudoscalar glueball in lattice QCD. The model takes as input a sequence of\nfloating-point numbers with lengths ranging from 30 to 35 and produces a\ntwo-dimensional vector output. It integrates floating-point embeddings and\npositional encoding, and is trained using binary cross-entropy loss. The paper\nprovides a detailed description of the model's components and training methods,\nand compares the performance of the traditional least squares method, the\npreviously used deep neural network, and the modified Transformer in mass\nestimation. The results show that the modified Transformer model achieves\ngreater accuracy in mass estimation than the traditional least squares method.\nAdditionally, compared to the deep neural network, this model utilizes\npositional encoding and can handle input sequences of varying lengths, offering\nenhanced adaptability.","PeriodicalId":501191,"journal":{"name":"arXiv - PHYS - High Energy Physics - Lattice","volume":"30 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - PHYS - High Energy Physics - Lattice","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2408.13280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A modified Transformer model is introduced for estimating the mass of pseudoscalar glueball in lattice QCD. The model takes as input a sequence of floating-point numbers with lengths ranging from 30 to 35 and produces a two-dimensional vector output. It integrates floating-point embeddings and positional encoding, and is trained using binary cross-entropy loss. The paper provides a detailed description of the model's components and training methods, and compares the performance of the traditional least squares method, the previously used deep neural network, and the modified Transformer in mass estimation. The results show that the modified Transformer model achieves greater accuracy in mass estimation than the traditional least squares method. Additionally, compared to the deep neural network, this model utilizes positional encoding and can handle input sequences of varying lengths, offering enhanced adaptability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于改良变压器的伪星胶球质量估算
本文介绍了一种改进的变换器模型,用于估计格子 QCD 中伪标星胶球的质量。该模型将长度为 30 至 35 的浮点数序列作为输入,并产生二维向量输出。它集成了浮点嵌入和位置编码,并使用二元交叉熵损失进行训练。论文详细描述了模型的组成和训练方法,并比较了传统最小二乘法、先前使用的深度神经网络和改进的 Transformer 在质量估计中的性能。结果表明,与传统的最小二乘法相比,改进的 Transformer 模型的质量估计精度更高。此外,与深度神经网络相比,该模型采用了位置编码,可以处理不同长度的输入序列,适应性更强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The $η_c$-meson leading-twist distribution amplitude Bootstrap-determined p-values in Lattice QCD Inverse Spin Hall Effect in Nonequilibrium Dirac Systems Induced by Anomalous Flow Imbalance Supersymmetric QCD on the lattice: Fine-tuning and counterterms for the quartic couplings Finite-size topological phases from semimetals
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1