Enhanced stability and electrochemical performance of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material via yttrium doping for advanced sodium-ion batteries

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2024-09-13 DOI:10.1007/s11581-024-05813-w
Weijia Tang, Yuming Liu, Changlong Lei, Yunjiao Li, Zhenjiang He
{"title":"Enhanced stability and electrochemical performance of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material via yttrium doping for advanced sodium-ion batteries","authors":"Weijia Tang, Yuming Liu, Changlong Lei, Yunjiao Li, Zhenjiang He","doi":"10.1007/s11581-024-05813-w","DOIUrl":null,"url":null,"abstract":"<p>Overcoming rapid capacity decay and structural instability remains a key challenge for the commercialization of O3-type layered cathode materials. This study investigates the effect of yttrium (Y) doping on the performance of NaNi<sub>1/3</sub>Fe<sub>1/3</sub>Mn<sub>1/3</sub>O<sub>2</sub> (NNFMO) cathode material for sodium-ion batteries. Compared to the TM-O bonds in the unmodified material, the Y-doped material has stronger Y–O bonds that form a stable structure. Y doping enhances the reversibility of Ni/Fe redox reactions and mitigates the irreversible P3-O'-P3' phase transition. Electrochemical analysis reveals that the Y-doped cathode material (NNFY-10000) exhibits excellent rate performance and remarkable cycle stability. Specifically, NNFY-10000 maintains a discharge capacity of 110.6 mAhg<sup>−1</sup> at a 1 C rate and retains 72.26% of its capacity after 200 cycles, outperforming undoped NNFMO. These improvements are attributed to the stable structure formed by strong Y–O bonds, reduced polarization during the cycling process, and enhanced redox reaction reversibility due to Y doping. This study not only elucidates the mechanism by which Y doping improves the electrochemical performance of NNFMO but also provides valuable insights for the development of high-performance sodium-ion battery cathode materials. The strategic introduction of rare earth elements such as Y offers a promising approach to overcoming the inherent limitations of O3-type layered cathode materials, paving the way for their practical application in energy storage systems.</p>","PeriodicalId":599,"journal":{"name":"Ionics","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1007/s11581-024-05813-w","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Overcoming rapid capacity decay and structural instability remains a key challenge for the commercialization of O3-type layered cathode materials. This study investigates the effect of yttrium (Y) doping on the performance of NaNi1/3Fe1/3Mn1/3O2 (NNFMO) cathode material for sodium-ion batteries. Compared to the TM-O bonds in the unmodified material, the Y-doped material has stronger Y–O bonds that form a stable structure. Y doping enhances the reversibility of Ni/Fe redox reactions and mitigates the irreversible P3-O'-P3' phase transition. Electrochemical analysis reveals that the Y-doped cathode material (NNFY-10000) exhibits excellent rate performance and remarkable cycle stability. Specifically, NNFY-10000 maintains a discharge capacity of 110.6 mAhg−1 at a 1 C rate and retains 72.26% of its capacity after 200 cycles, outperforming undoped NNFMO. These improvements are attributed to the stable structure formed by strong Y–O bonds, reduced polarization during the cycling process, and enhanced redox reaction reversibility due to Y doping. This study not only elucidates the mechanism by which Y doping improves the electrochemical performance of NNFMO but also provides valuable insights for the development of high-performance sodium-ion battery cathode materials. The strategic introduction of rare earth elements such as Y offers a promising approach to overcoming the inherent limitations of O3-type layered cathode materials, paving the way for their practical application in energy storage systems.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
通过掺杂钇提高用于先进钠离子电池的 O3 型 NaNi1/3Fe1/3Mn1/3O2 正极材料的稳定性和电化学性能
克服容量快速衰减和结构不稳定性仍然是 O3 型层状阴极材料商业化的关键挑战。本研究探讨了掺杂钇(Y)对钠离子电池用 NaNi1/3Fe1/3Mn1/3O2(NNFMO)阴极材料性能的影响。与未改性材料中的 TM-O 键相比,掺杂钇的材料具有更强的 Y-O 键,可形成稳定的结构。Y 掺杂增强了镍/铁氧化还原反应的可逆性,缓解了不可逆的 P3-O'-P3' 相变。电化学分析表明,掺杂 Y 的阴极材料(NNFY-10000)具有出色的速率性能和显著的循环稳定性。具体来说,NNFY-10000 在 1 C 速率下可保持 110.6 mAhg-1 的放电容量,在 200 次循环后可保持 72.26% 的容量,性能优于未掺杂的 NNFMO。这些改进归功于由强 Y-O 键形成的稳定结构、循环过程中极化的降低以及掺杂 Y 后氧化还原反应可逆性的增强。这项研究不仅阐明了掺杂 Y 能提高 NNFMO 电化学性能的机理,还为开发高性能钠离子电池阴极材料提供了宝贵的见解。战略性地引入 Y 等稀土元素为克服 O3 型层状阴极材料的固有局限性提供了一种可行的方法,为其在储能系统中的实际应用铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
Enhanced stability and electrochemical performance of O3-type NaNi1/3Fe1/3Mn1/3O2 cathode material via yttrium doping for advanced sodium-ion batteries Self-templated sacrificial strategy to construct nanorod array-like Co9S8 for high-performance asymmetric supercapacitors Designing NiCoS/CNTs composites for highly efficient bifunctional electrocatalyst in water splitting A simple and rapid batch injection analysis method with amperometric detection for determination of azithromycin in pharmaceutical tablets Synthesis and characterization of (Gd, Nd) co-doped ceramic materials (Gd0.1NdxCe0.9-xO2-δ x = 0.05, 0.10, 0.15) via polyol method using different hydrolysis ratios
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1