Improving electrochemical and photocatalytic performance of C3N4/poly(thiophene)/poly (3,4-ethylene dioxy thiophene) nanocomposite

IF 2.4 4区 化学 Q3 CHEMISTRY, PHYSICAL Ionics Pub Date : 2024-09-05 DOI:10.1007/s11581-024-05801-0
S. Munusamy, T. Bavani, G. Gnanamoorthy, K. Ramamurthy, K. Kalpana, Majed A. Alotaibi
{"title":"Improving electrochemical and photocatalytic performance of C3N4/poly(thiophene)/poly (3,4-ethylene dioxy thiophene) nanocomposite","authors":"S. Munusamy,&nbsp;T. Bavani,&nbsp;G. Gnanamoorthy,&nbsp;K. Ramamurthy,&nbsp;K. Kalpana,&nbsp;Majed A. Alotaibi","doi":"10.1007/s11581-024-05801-0","DOIUrl":null,"url":null,"abstract":"<div><p>This study introduces a novel hybrid nanomaterial, C<sub>3</sub>N<sub>4</sub>-PTh-PEDOT, synthesized through a chemical oxidative technique. The research addresses the need for materials with enhanced catalytic properties and stability for diverse applications. The C<sub>3</sub>N<sub>4</sub>-PTh-PEDOT material exhibits significant improvements in catalytic performance, suitable for applications such as organic binder-free sources, modifications of glassy carbon electrode (GCE) electrodes, and as a reducing agent-free photocatalyst. The material demonstrates rapid electron transfer and excellent electrochemical stability, thanks to its core–shell structures and the interaction between the conjugated polymers PTh and PEDOT with C<sub>3</sub>N<sub>4</sub>. This hybrid material achieves 97.47% degradation of methyl blue (MB) in 80 min by minimizing electron–hole recombination, enhancing photocatalytic activity. Additionally, the C<sub>3</sub>N<sub>4</sub>-PTh-PEDOT-modified GCE enables sensitive detection of oxyfendazole (OFZ) using differential pulse voltammetry, showing a linear response within the concentration range of 0.32 × 10<sup>−7</sup> to 3.7 × 10<sup>−8</sup> M, with a sensitivity of 3.156 × 10<sup>−8</sup> M µA<sup>−1</sup> and a limit of quantification of 10.7787 × 10<sup>−8</sup> M µA<sup>−1</sup>.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":599,"journal":{"name":"Ionics","volume":"30 11","pages":"7337 - 7350"},"PeriodicalIF":2.4000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ionics","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s11581-024-05801-0","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study introduces a novel hybrid nanomaterial, C3N4-PTh-PEDOT, synthesized through a chemical oxidative technique. The research addresses the need for materials with enhanced catalytic properties and stability for diverse applications. The C3N4-PTh-PEDOT material exhibits significant improvements in catalytic performance, suitable for applications such as organic binder-free sources, modifications of glassy carbon electrode (GCE) electrodes, and as a reducing agent-free photocatalyst. The material demonstrates rapid electron transfer and excellent electrochemical stability, thanks to its core–shell structures and the interaction between the conjugated polymers PTh and PEDOT with C3N4. This hybrid material achieves 97.47% degradation of methyl blue (MB) in 80 min by minimizing electron–hole recombination, enhancing photocatalytic activity. Additionally, the C3N4-PTh-PEDOT-modified GCE enables sensitive detection of oxyfendazole (OFZ) using differential pulse voltammetry, showing a linear response within the concentration range of 0.32 × 10−7 to 3.7 × 10−8 M, with a sensitivity of 3.156 × 10−8 M µA−1 and a limit of quantification of 10.7787 × 10−8 M µA−1.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
提高 C3N4/聚(噻吩)/聚(3,4-乙烯二氧噻吩)纳米复合材料的电化学和光催化性能
本研究介绍了通过化学氧化技术合成的新型杂化纳米材料 C3N4-PTh-PEDOT。该研究满足了不同应用领域对具有更强催化性能和稳定性的材料的需求。C3N4-PTh-PEDOT 材料的催化性能显著提高,适用于无有机粘合剂源、玻璃碳电极(GCE)改性以及无还原剂光催化剂等应用。由于其核壳结构以及共轭聚合物 PTh 和 PEDOT 与 C3N4 之间的相互作用,该材料具有快速的电子转移和出色的电化学稳定性。这种混合材料通过最大限度地减少电子-空穴重组,在 80 分钟内实现了 97.47% 的甲基蓝(MB)降解,从而提高了光催化活性。此外,C3N4-PTh-PEDOT 修饰的 GCE 还能利用微分脉冲伏安法灵敏地检测氧氟沙星(OFZ),在 0.32 × 10-7 至 3.7 × 10-8 M 的浓度范围内显示出线性响应,灵敏度为 3.156 × 10-8 M µA-1,定量限为 10.7787 × 10-8 M µA-1。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ionics
Ionics 化学-电化学
CiteScore
5.30
自引率
7.10%
发文量
427
审稿时长
2.2 months
期刊介绍: Ionics is publishing original results in the fields of science and technology of ionic motion. This includes theoretical, experimental and practical work on electrolytes, electrode, ionic/electronic interfaces, ionic transport aspects of corrosion, galvanic cells, e.g. for thermodynamic and kinetic studies, batteries, fuel cells, sensors and electrochromics. Fast solid ionic conductors are presently providing new opportunities in view of several advantages, in addition to conventional liquid electrolytes.
期刊最新文献
The influence of iron site doping lithium iron phosphate on the low temperature properties and the diffusion mechanism of lithium ion Enhancing safety and performance of hybrid supercapacitors through material system optimization High rate capability performance of cobalt-free lithium-rich Li1.2Ni0.18Mn0.57Al0.05O2 cathode material synthesized via co-precipitation method Aluminum-doped high-entropy oxide pyrochlore for enhanced lithium storage Hydrothermal synthesis of MoS2 nanoparticle as an electroactive material for supercapacitor
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1