Tuning the cathode/solid electrolyte interface for high‐performance solid‐state Na‐ion batteries

IF 3.5 3区 材料科学 Q1 MATERIALS SCIENCE, CERAMICS Journal of the American Ceramic Society Pub Date : 2024-08-26 DOI:10.1111/jace.20095
Raghunayakula Thirupathi, Saurabh Sharma, Sandipan Bhattacharyya, Shobit Omar
{"title":"Tuning the cathode/solid electrolyte interface for high‐performance solid‐state Na‐ion batteries","authors":"Raghunayakula Thirupathi, Saurabh Sharma, Sandipan Bhattacharyya, Shobit Omar","doi":"10.1111/jace.20095","DOIUrl":null,"url":null,"abstract":"This study examines and compares the impact of various interfacial modification strategies in optimizing the contact resistance between the rigid ceramic electrolyte and cathode active material (AM) in solid‐state sodium‐ion batteries (SSBs). All the cells are fabricated using Na<jats:sub>3.1</jats:sub>V<jats:sub>2</jats:sub>P<jats:sub>2.9</jats:sub>Si<jats:sub>0.1</jats:sub>O<jats:sub>12,</jats:sub> Na<jats:sub>3.456</jats:sub>Mg<jats:sub>0.128</jats:sub>Zr<jats:sub>1.872</jats:sub>Si<jats:sub>2.2</jats:sub>P<jats:sub>0.8</jats:sub>O<jats:sub>12</jats:sub>, and Na as a cathode AM, solid electrolyte (SE) and anode, respectively. The AM/SE interface is modified by (1) wetting the interface with organic liquid electrolyte (LE), (2) slurry casting and sintering a thin layer of composite cathode, and (3) infiltrating AM precursors inside the porous SE structure followed by drying and sintering. Despite exhibiting a stable cyclability performance, the SSBs prepared using the LE modification and composite cathode approach possess a low AM loading of &lt; 1 mg·cm<jats:sup>−2</jats:sup>. On the other hand, the SSBs with infiltrated‐cathode exhibit a superior discharge capacity of ∼ 102 mAh·g<jats:sup>−1</jats:sup> at 0.2C and less than 5% capacity fading after 50 cycles at room temperature. Notably, these cells contain a high AM loading of 2.12 mg·cm<jats:sup>−2</jats:sup>. The microstructural analysis reveals the presence of AM particles inside the pores of the porous SE, allowing for the efficient insertion/removal of sodium ions. The porous scaffold of SE not only provides continuous sodium‐ion conduction pathways inside the cathode structure but also renders stability by accommodating stress induced by volume change during repeated cycling. The outcomes of this work demonstrate the effectiveness of the wet‐chemical infiltration technique in improving the AM loading and storage capacity performance of SSBs working at 25°C.","PeriodicalId":200,"journal":{"name":"Journal of the American Ceramic Society","volume":null,"pages":null},"PeriodicalIF":3.5000,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the American Ceramic Society","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1111/jace.20095","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CERAMICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines and compares the impact of various interfacial modification strategies in optimizing the contact resistance between the rigid ceramic electrolyte and cathode active material (AM) in solid‐state sodium‐ion batteries (SSBs). All the cells are fabricated using Na3.1V2P2.9Si0.1O12, Na3.456Mg0.128Zr1.872Si2.2P0.8O12, and Na as a cathode AM, solid electrolyte (SE) and anode, respectively. The AM/SE interface is modified by (1) wetting the interface with organic liquid electrolyte (LE), (2) slurry casting and sintering a thin layer of composite cathode, and (3) infiltrating AM precursors inside the porous SE structure followed by drying and sintering. Despite exhibiting a stable cyclability performance, the SSBs prepared using the LE modification and composite cathode approach possess a low AM loading of < 1 mg·cm−2. On the other hand, the SSBs with infiltrated‐cathode exhibit a superior discharge capacity of ∼ 102 mAh·g−1 at 0.2C and less than 5% capacity fading after 50 cycles at room temperature. Notably, these cells contain a high AM loading of 2.12 mg·cm−2. The microstructural analysis reveals the presence of AM particles inside the pores of the porous SE, allowing for the efficient insertion/removal of sodium ions. The porous scaffold of SE not only provides continuous sodium‐ion conduction pathways inside the cathode structure but also renders stability by accommodating stress induced by volume change during repeated cycling. The outcomes of this work demonstrate the effectiveness of the wet‐chemical infiltration technique in improving the AM loading and storage capacity performance of SSBs working at 25°C.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
调整阴极/固体电解质界面以实现高性能固态钠离子电池
本研究探讨并比较了各种界面改性策略对优化固态钠离子电池(SSB)中刚性陶瓷电解质与阴极活性材料(AM)之间接触电阻的影响。所有电池均采用 Na3.1V2P2.9Si0.1O12、Na3.456Mg0.128Zr1.872Si2.2P0.8O12 和 Na 分别作为阴极 AM、固体电解质 (SE) 和阳极。AM/SE 界面的改性方法是:(1) 用有机液态电解质(LE)润湿界面;(2) 浆料浇铸并烧结一薄层复合阴极;(3) 将 AM 前体渗入多孔 SE 结构内部,然后干燥并烧结。尽管采用 LE 改性和复合阴极方法制备的 SSB 具有稳定的循环性能,但 AM 负载较低,仅为 1 mg-cm-2。另一方面,采用浸润阴极的固态电池在 0.2C 下的放电容量高达 102 mAh-g-1,在室温下循环 50 次后容量衰减小于 5%。值得注意的是,这些电池的 AM 含量高达 2.12 mg-cm-2。微观结构分析表明,多孔 SE 的孔隙内存在 AM 颗粒,可有效地插入/移除钠离子。多孔 SE 支架不仅为阴极结构内部提供了连续的钠离子传导通道,而且还能在反复循环过程中通过容纳体积变化引起的应力而实现稳定性。这项工作的成果证明了湿化学渗透技术在改善 25°C 下工作的 SSB 的 AM 负载和存储容量性能方面的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of the American Ceramic Society
Journal of the American Ceramic Society 工程技术-材料科学:硅酸盐
CiteScore
7.50
自引率
7.70%
发文量
590
审稿时长
2.1 months
期刊介绍: The Journal of the American Ceramic Society contains records of original research that provide insight into or describe the science of ceramic and glass materials and composites based on ceramics and glasses. These papers include reports on discovery, characterization, and analysis of new inorganic, non-metallic materials; synthesis methods; phase relationships; processing approaches; microstructure-property relationships; and functionalities. Of great interest are works that support understanding founded on fundamental principles using experimental, theoretical, or computational methods or combinations of those approaches. All the published papers must be of enduring value and relevant to the science of ceramics and glasses or composites based on those materials. Papers on fundamental ceramic and glass science are welcome including those in the following areas: Enabling materials for grand challenges[...] Materials design, selection, synthesis and processing methods[...] Characterization of compositions, structures, defects, and properties along with new methods [...] Mechanisms, Theory, Modeling, and Simulation[...] JACerS accepts submissions of full-length Articles reporting original research, in-depth Feature Articles, Reviews of the state-of-the-art with compelling analysis, and Rapid Communications which are short papers with sufficient novelty or impact to justify swift publication.
期刊最新文献
Modulation of solid solution in MgxMn1−xAl2xFe2(1−x)O4 spinel ceramics for multifunctional devices Molecular dynamics study on structural characteristics of amorphous C-S-H with different Ca/Si ratios Fabrication of BiScO3–PbTiO3/epoxy 1–3 piezoelectric composites for high-temperature transducer applications Correction to: Fabrication of vanadium telluride anchored on carbon nanotubes nanocomposite for overall water splitting Incorporation of specific defects through ion bombardment for better ferroelectrics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1