Giusi Midolo, Giuseppe Cutuli, Simona M. C. Porto, Gianluca Ottolina, Jacopo Paini, Francesca Valenti
{"title":"LCA analysis for assessing environmenstal sustainability of new biobased chemicals by valorising citrus waste","authors":"Giusi Midolo, Giuseppe Cutuli, Simona M. C. Porto, Gianluca Ottolina, Jacopo Paini, Francesca Valenti","doi":"10.1038/s41598-024-72468-y","DOIUrl":null,"url":null,"abstract":"<p>The global shift towards using biomass for biofuels and chemicals is accelerating due to increasing environmental concerns and geopolitical strategies. This study investigates a biorefinery model using citrus-processing-waste, specifically citrus pulp, to produce high-value products for various industries, including cosmetics, pharmaceuticals, flavours, fragrances, and food packaging. In Italy, particularly Sicily region, citrus processing generates significant amounts of waste, often improperly disposed of, contributing to environmental problems. Researchers have demonstrated that citrus waste can yield commercially valuable compounds. This study specifically focuses on orange peel waste (OPW), which constitutes about half of the fruit's weight, aiming to extract pectin and limonene through a combined process. The extraction process was carried out on a laboratory scale, and its sustainability was evaluated using a life cycle assessment (LCA) with SimaPro 8.1 software and the Impact 2002 + method. The functional unit adopted for this study is 300 g of OPW, obtained after the pre-treatment phase, from which 0.14 g of limonene and 8.22 g of pectin were extracted. The LCA results revealed that pectin extraction has a significantly higher environmental impact compared to limonene extraction, primarily due to the use of ethanol as a solvent, followed by electricity consumption. To mitigate this impact, the LCA assessed alternative, more sustainable solvents, resulting in a 73.4% reduction in the environmental footprint of the pectin extraction process. These findings underscore the critical role of LCA, even at the laboratory scale, in identifying environmental hotspots and providing insights for improving and optimizing processes for potential industrial-scale applications.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-72468-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
The global shift towards using biomass for biofuels and chemicals is accelerating due to increasing environmental concerns and geopolitical strategies. This study investigates a biorefinery model using citrus-processing-waste, specifically citrus pulp, to produce high-value products for various industries, including cosmetics, pharmaceuticals, flavours, fragrances, and food packaging. In Italy, particularly Sicily region, citrus processing generates significant amounts of waste, often improperly disposed of, contributing to environmental problems. Researchers have demonstrated that citrus waste can yield commercially valuable compounds. This study specifically focuses on orange peel waste (OPW), which constitutes about half of the fruit's weight, aiming to extract pectin and limonene through a combined process. The extraction process was carried out on a laboratory scale, and its sustainability was evaluated using a life cycle assessment (LCA) with SimaPro 8.1 software and the Impact 2002 + method. The functional unit adopted for this study is 300 g of OPW, obtained after the pre-treatment phase, from which 0.14 g of limonene and 8.22 g of pectin were extracted. The LCA results revealed that pectin extraction has a significantly higher environmental impact compared to limonene extraction, primarily due to the use of ethanol as a solvent, followed by electricity consumption. To mitigate this impact, the LCA assessed alternative, more sustainable solvents, resulting in a 73.4% reduction in the environmental footprint of the pectin extraction process. These findings underscore the critical role of LCA, even at the laboratory scale, in identifying environmental hotspots and providing insights for improving and optimizing processes for potential industrial-scale applications.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.