Evaluation of on-site calibration procedures for SKYNET Prede POM sun–sky photometers

IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Measurement Techniques Pub Date : 2024-09-03 DOI:10.5194/amt-17-5029-2024
Monica Campanelli, Victor Estellés, Gaurav Kumar, Teruyuki Nakajima, Masahiro Momoi, Julian Gröbner, Stelios Kazadzis, Natalia Kouremeti, Angelos Karanikolas, Africa Barreto, Saulius Nevas, Kerstin Schwind, Philipp Schneider, Iiro Harju, Petri Kärhä, Henri Diémoz, Rei Kudo, Akihiro Uchiyama, Akihiro Yamazaki, Anna Maria Iannarelli, Gabriele Mevi, Annalisa Di Bernardino, Stefano Casadio
{"title":"Evaluation of on-site calibration procedures for SKYNET Prede POM sun–sky photometers","authors":"Monica Campanelli, Victor Estellés, Gaurav Kumar, Teruyuki Nakajima, Masahiro Momoi, Julian Gröbner, Stelios Kazadzis, Natalia Kouremeti, Angelos Karanikolas, Africa Barreto, Saulius Nevas, Kerstin Schwind, Philipp Schneider, Iiro Harju, Petri Kärhä, Henri Diémoz, Rei Kudo, Akihiro Uchiyama, Akihiro Yamazaki, Anna Maria Iannarelli, Gabriele Mevi, Annalisa Di Bernardino, Stefano Casadio","doi":"10.5194/amt-17-5029-2024","DOIUrl":null,"url":null,"abstract":"Abstract. To retrieve columnar intensive aerosol properties from sun–sky photometers, both irradiance and radiance calibration factors are needed. For the irradiance the solar calibration constant, V0, which denotes the instrument counts for a direct normal solar flux extrapolated to the top of the atmosphere, must be determined. The solid view angle, SVA, is a measure of the field of view of the instrument, and it is important for obtaining the radiance from sky diffuse irradiance measurements. Each of the three sun-photometer networks considered in the present study (SKYNET, AERONET, WMO GAW) adopts different protocols of calibration, and we evaluate the performance of the on-site calibration procedures, applicable to every kind of sun–sky photometer but tested in this analysis only on SKYNET Prede POM01 instruments, during intercomparison campaigns and laboratory calibrations held in the framework of the Metrology for Aerosol Optical Properties (MAPP) European Metrology Programme for Innovation and Research (EMPIR) project. The on-site calibration, performed as frequently as possible (ideally monthly) to monitor changes in the device conditions, allows operators to track and evaluate the calibration status on a continuous basis, considerably reducing the data gaps incurred by the periodic shipments for performing centralized calibrations. The performance of the on-site calibration procedures for V0 was very good at sites with low turbidity, showing agreement with a reference calibration between 0.5 % and 1.5 % depending on wavelengths. In the urban area, the agreement decreases between 1.7 % and 2.5 %. For the SVA the difference varied from a minimum of 0.03 % to a maximum of 3.46 %.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"74 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-17-5029-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. To retrieve columnar intensive aerosol properties from sun–sky photometers, both irradiance and radiance calibration factors are needed. For the irradiance the solar calibration constant, V0, which denotes the instrument counts for a direct normal solar flux extrapolated to the top of the atmosphere, must be determined. The solid view angle, SVA, is a measure of the field of view of the instrument, and it is important for obtaining the radiance from sky diffuse irradiance measurements. Each of the three sun-photometer networks considered in the present study (SKYNET, AERONET, WMO GAW) adopts different protocols of calibration, and we evaluate the performance of the on-site calibration procedures, applicable to every kind of sun–sky photometer but tested in this analysis only on SKYNET Prede POM01 instruments, during intercomparison campaigns and laboratory calibrations held in the framework of the Metrology for Aerosol Optical Properties (MAPP) European Metrology Programme for Innovation and Research (EMPIR) project. The on-site calibration, performed as frequently as possible (ideally monthly) to monitor changes in the device conditions, allows operators to track and evaluate the calibration status on a continuous basis, considerably reducing the data gaps incurred by the periodic shipments for performing centralized calibrations. The performance of the on-site calibration procedures for V0 was very good at sites with low turbidity, showing agreement with a reference calibration between 0.5 % and 1.5 % depending on wavelengths. In the urban area, the agreement decreases between 1.7 % and 2.5 %. For the SVA the difference varied from a minimum of 0.03 % to a maximum of 3.46 %.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估 SKYNET Prede POM 日空光度计的现场校准程序
摘要要从日空光度计中获取柱状密集气溶胶特性,需要辐照度和辐射度校准因子。对于辐照度,必须确定太阳校准常数 V0,它表示外推到大气顶部的直接正常太阳通量的仪器计数。实视角(SVA)是仪器视场的测量值,对于从天空漫射辐照度测量值中获取辐照度非常重要。本研究中考虑的三个太阳光度计网络(SKYNET、AERONET、WMO GAW)分别采用了不同的校准协议,我们评估了现场校准程序的性能,该程序适用于每种太阳光度计,但在本分析中仅对 SKYNET Prede POM01 仪器进行了测试,测试是在气溶胶光学特性计量学(MAPP)欧洲创新和研究计量学计划(EMPIR)项目框架内举行的相互比较活动和实验室校准期间进行的。现场校准尽可能频繁地进行(理想情况下每月一次),以监测设备条件的变化,使操作人员能够持续跟踪和评估校准状态,从而大大减少了因定期运输进行集中校准而产生的数据缺口。在浊度较低的地点,V0 的现场校准程序性能非常好,根据波长的不同,与参考校准的一致性在 0.5 % 到 1.5 % 之间。在城市地区,吻合度在 1.7 % 到 2.5 % 之间。就 SVA 而言,差异最小为 0.03%,最大为 3.46%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Measurement Techniques
Atmospheric Measurement Techniques METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
7.10
自引率
18.40%
发文量
331
审稿时长
3 months
期刊介绍: Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere. The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.
期刊最新文献
Analyzing the chemical composition, morphology and size of ice-nucleating particles by coupling a scanning electron microscope to an offline diffusion chamber Wet-Radome Attenuation in ARM Cloud Radars and Its Utilization in Radar Calibration Using Disdrometer Measurements Chilean Observation Network De MeteOr Radars (CONDOR): Multi-Static System Configuration & Wind Comparison with Co-located Lidar Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations Advances in OH reactivity instruments for airborne field measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1