A bias-corrected GEMS geostationary satellite product for nitrogen dioxide using machine learning to enforce consistency with the TROPOMI satellite instrument

IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Measurement Techniques Pub Date : 2024-09-05 DOI:10.5194/amt-17-5147-2024
Yujin J. Oak, Daniel J. Jacob, Nicholas Balasus, Laura H. Yang, Heesung Chong, Junsung Park, Hanlim Lee, Gitaek T. Lee, Eunjo S. Ha, Rokjin J. Park, Hyeong-Ahn Kwon, Jhoon Kim
{"title":"A bias-corrected GEMS geostationary satellite product for nitrogen dioxide using machine learning to enforce consistency with the TROPOMI satellite instrument","authors":"Yujin J. Oak, Daniel J. Jacob, Nicholas Balasus, Laura H. Yang, Heesung Chong, Junsung Park, Hanlim Lee, Gitaek T. Lee, Eunjo S. Ha, Rokjin J. Park, Hyeong-Ahn Kwon, Jhoon Kim","doi":"10.5194/amt-17-5147-2024","DOIUrl":null,"url":null,"abstract":"Abstract. The Geostationary Environment Monitoring Spectrometer (GEMS) launched in February 2020 is now providing continuous daytime hourly observations of nitrogen dioxide (NO2) columns over eastern Asia (5° S–45° N, 75–145° E) with 3.5 × 7.7 km2 pixel resolution. These data provide unique information to improve understanding of the sources, chemistry, and transport of nitrogen oxides (NOx) with implications for atmospheric chemistry and air quality, but opportunities for direct validation are very limited. Here we correct the operational level-2 (L2) NO2 vertical column densities (VCDs) from GEMS with a machine learning (ML) model to match the much sparser but more mature observations from the low Earth orbit TROPOspheric Monitoring Instrument (TROPOMI), preserving the data density of GEMS but making them consistent with TROPOMI. We first reprocess the GEMS and TROPOMI operational L2 products to use common prior vertical NO2 profiles (shape factors) from the GEOS-Chem chemical transport model. This removes a major inconsistency between the two satellite products and greatly improves their agreement with ground-based Pandora NO2 VCD data in source regions. We then apply the ML model to correct the remaining differences, Δ(GEMS–TROPOMI), using the GEMS NO2 VCDs and retrieval parameters as predictor variables. We train the ML model with colocated GEMS and TROPOMI NO2 VCDs, taking advantage of TROPOMI off-track viewing to cover the wide range of effective zenith angles (EZAs) observed by GEMS. The two most important predictor variables for Δ(GEMS–TROPOMI) are GEMS NO2 VCD and EZA. The corrected GEMS product is unbiased relative to TROPOMI and shows a diurnal variation over source regions more consistent with Pandora than the operational product.","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"27 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/amt-17-5147-2024","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. The Geostationary Environment Monitoring Spectrometer (GEMS) launched in February 2020 is now providing continuous daytime hourly observations of nitrogen dioxide (NO2) columns over eastern Asia (5° S–45° N, 75–145° E) with 3.5 × 7.7 km2 pixel resolution. These data provide unique information to improve understanding of the sources, chemistry, and transport of nitrogen oxides (NOx) with implications for atmospheric chemistry and air quality, but opportunities for direct validation are very limited. Here we correct the operational level-2 (L2) NO2 vertical column densities (VCDs) from GEMS with a machine learning (ML) model to match the much sparser but more mature observations from the low Earth orbit TROPOspheric Monitoring Instrument (TROPOMI), preserving the data density of GEMS but making them consistent with TROPOMI. We first reprocess the GEMS and TROPOMI operational L2 products to use common prior vertical NO2 profiles (shape factors) from the GEOS-Chem chemical transport model. This removes a major inconsistency between the two satellite products and greatly improves their agreement with ground-based Pandora NO2 VCD data in source regions. We then apply the ML model to correct the remaining differences, Δ(GEMS–TROPOMI), using the GEMS NO2 VCDs and retrieval parameters as predictor variables. We train the ML model with colocated GEMS and TROPOMI NO2 VCDs, taking advantage of TROPOMI off-track viewing to cover the wide range of effective zenith angles (EZAs) observed by GEMS. The two most important predictor variables for Δ(GEMS–TROPOMI) are GEMS NO2 VCD and EZA. The corrected GEMS product is unbiased relative to TROPOMI and shows a diurnal variation over source regions more consistent with Pandora than the operational product.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机器学习加强与 TROPOMI 卫星仪器一致性的偏差校正 GEMS 地球静止卫星二氧化氮产品
摘要。2020 年 2 月发射的地球静止环境监测分光计(GEMS)目前正在亚洲东部(南纬 5°-45°,东经 75-145°)上空以 3.5 × 7.7 平方公里的像素分辨率对二氧化氮(NO2)柱进行白天每小时连续观测。这些数据提供了独特的信息,有助于更好地了解氮氧化物(NOx)的来源、化学和传输,对大气化学和空气质量有影响,但直接验证的机会非常有限。在这里,我们用机器学习(ML)模型修正了来自全球环境监测系统(GEMS)的运行 2 级(L2)氮氧化物垂直柱密度(VCDs),使其与低地球轨道 TROPOspheric Monitoring Instrument(TROPOMI)更稀少但更成熟的观测数据相匹配,既保留了 GEMS 的数据密度,又使其与 TROPOMI 保持一致。我们首先对 GEMS 和 TROPOMI 运行的 L2 产品进行重新处理,使用来自 GEOS-Chem 化学传输模型的共同先验垂直 NO2 剖面(形状因子)。这消除了两个卫星产品之间的主要不一致性,并大大提高了它们与地面 Pandora NO2 VCD 数据在源区的一致性。然后,我们将 GEMS NO2 VCD 和检索参数作为预测变量,应用 ML 模型修正剩余差异 Δ(GEMS-TROPOMI)。我们利用 GEMS 和 TROPOMI NO2 VCDs 共址来训练 ML 模型,利用 TROPOMI 离轨观测来覆盖 GEMS 观测到的广泛有效天顶角 (EZAs)。Δ(GEMS-TROPOMI)的两个最重要的预测变量是 GEMS NO2 VCD 和 EZA。与 TROPOMI 相比,校正后的 GEMS 产品没有偏差,与运行产品相比,它在源区显示出与 Pandora 更一致的昼夜变化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Measurement Techniques
Atmospheric Measurement Techniques METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
7.10
自引率
18.40%
发文量
331
审稿时长
3 months
期刊介绍: Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere. The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.
期刊最新文献
Analyzing the chemical composition, morphology and size of ice-nucleating particles by coupling a scanning electron microscope to an offline diffusion chamber Wet-Radome Attenuation in ARM Cloud Radars and Its Utilization in Radar Calibration Using Disdrometer Measurements Chilean Observation Network De MeteOr Radars (CONDOR): Multi-Static System Configuration & Wind Comparison with Co-located Lidar Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations Advances in OH reactivity instruments for airborne field measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1