Gridded surface O3, NOx, and CO abundances for model metrics from the South Korean ground station network

IF 3.2 3区 地球科学 Q2 METEOROLOGY & ATMOSPHERIC SCIENCES Atmospheric Measurement Techniques Pub Date : 2024-08-22 DOI:10.5194/egusphere-2024-1173
Calum Patrick Wilson, Michael John Prather
{"title":"Gridded surface O3, NOx, and CO abundances for model metrics from the South Korean ground station network","authors":"Calum Patrick Wilson, Michael John Prather","doi":"10.5194/egusphere-2024-1173","DOIUrl":null,"url":null,"abstract":"<strong>Abstract.</strong> We present gridded surface air quality datasets over South Korea for three key species – ozone (O<sub>3</sub>), carbon monoxide (CO), and nitrogen oxides (NO<sub>x</sub>) during the timeframe of the Korea–US Air Quality (KORUS–AQ) mission (May–June 2016). The tenth degree hourly averaged abundances are constructed from the 300+ air quality network sites using inverse distance weighting with simple declustering. Cross–comparing the interpolated fields against the site data that was used to create them reveals high prediction skill for O<sub>3</sub> (80 %) throughout South Korea, and moderate skill (60 %) for CO and NO<sub>x</sub> on average in densely observed regions after individual mean bias corrections. The gridded O<sub>3</sub> and CO interpolations predict the NASA DC–8 observations in the planetary boundary layer (PBL) with high skill (80 %) in the Seoul Metropolitan Area (SMA) after subtracting the mean bias. DC–8 NO<sub>x</sub> observations were much less predictable on account of consistently negative vertical gradients within the PBL. Our gridded products capture the mean and variability of O<sub>3</sub> throughout South Korea, and of CO and surface NO<sub>x</sub> in most site–dense urban centres (SMA, Cheongju, Gwangju, Daegu, Changwon, and Busan).","PeriodicalId":8619,"journal":{"name":"Atmospheric Measurement Techniques","volume":"13 1","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Atmospheric Measurement Techniques","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5194/egusphere-2024-1173","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Abstract. We present gridded surface air quality datasets over South Korea for three key species – ozone (O3), carbon monoxide (CO), and nitrogen oxides (NOx) during the timeframe of the Korea–US Air Quality (KORUS–AQ) mission (May–June 2016). The tenth degree hourly averaged abundances are constructed from the 300+ air quality network sites using inverse distance weighting with simple declustering. Cross–comparing the interpolated fields against the site data that was used to create them reveals high prediction skill for O3 (80 %) throughout South Korea, and moderate skill (60 %) for CO and NOx on average in densely observed regions after individual mean bias corrections. The gridded O3 and CO interpolations predict the NASA DC–8 observations in the planetary boundary layer (PBL) with high skill (80 %) in the Seoul Metropolitan Area (SMA) after subtracting the mean bias. DC–8 NOx observations were much less predictable on account of consistently negative vertical gradients within the PBL. Our gridded products capture the mean and variability of O3 throughout South Korea, and of CO and surface NOx in most site–dense urban centres (SMA, Cheongju, Gwangju, Daegu, Changwon, and Busan).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
来自韩国地面站网络的模型指标的网格化地表 O3、NOx 和 CO 丰度
摘要我们介绍了韩美空气质量(KORUS-AQ)任务期间(2016 年 5 月至 6 月)韩国上空三个关键物种--臭氧(O3)、一氧化碳(CO)和氮氧化物(NOx)的网格化地表空气质量数据集。利用反距离加权和简单去聚类,从 300 多个空气质量网络站点构建了十度小时平均丰度。将插值场与用于创建插值场的站点数据进行交叉比较后发现,在整个韩国,O3 的预测技能较高(80%),而在单个平均偏差校正后,在观测密集区域,CO 和 NOx 的平均预测技能适中(60%)。在减去平均偏差后,网格化的臭氧和一氧化碳插值对美国宇航局 DC-8 在行星边界层(PBL)的观测结果进行了预测,在首尔大都会区(SMA)的预测技能较高(80%)。由于大气边界层内的垂直梯度一直为负,DC-8 NOx 观测结果的可预测性要差得多。我们的网格产品捕捉到了整个韩国的臭氧平均值和变异性,以及大多数站点密集的城市中心(SMA、清州、光州、大邱、昌原和釜山)的一氧化碳和地表氮氧化物的平均值和变异性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Atmospheric Measurement Techniques
Atmospheric Measurement Techniques METEOROLOGY & ATMOSPHERIC SCIENCES-
CiteScore
7.10
自引率
18.40%
发文量
331
审稿时长
3 months
期刊介绍: Atmospheric Measurement Techniques (AMT) is an international scientific journal dedicated to the publication and discussion of advances in remote sensing, in-situ and laboratory measurement techniques for the constituents and properties of the Earth’s atmosphere. The main subject areas comprise the development, intercomparison and validation of measurement instruments and techniques of data processing and information retrieval for gases, aerosols, and clouds. The manuscript types considered for peer-reviewed publication are research articles, review articles, and commentaries.
期刊最新文献
Analyzing the chemical composition, morphology and size of ice-nucleating particles by coupling a scanning electron microscope to an offline diffusion chamber Wet-Radome Attenuation in ARM Cloud Radars and Its Utilization in Radar Calibration Using Disdrometer Measurements Chilean Observation Network De MeteOr Radars (CONDOR): Multi-Static System Configuration & Wind Comparison with Co-located Lidar Benchmarking KDP in Rainfall: A Quantitative Assessment of Estimation Algorithms Using C-Band Weather Radar Observations Advances in OH reactivity instruments for airborne field measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1