A singular, broadly-applicable model for estimating on- and off-path walking travel rates using airborne lidar data

IF 3.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Reports Pub Date : 2024-09-13 DOI:10.1038/s41598-024-71359-6
Michael J. Campbell, Sierra L. Cutler, Philip E. Dennison
{"title":"A singular, broadly-applicable model for estimating on- and off-path walking travel rates using airborne lidar data","authors":"Michael J. Campbell, Sierra L. Cutler, Philip E. Dennison","doi":"10.1038/s41598-024-71359-6","DOIUrl":null,"url":null,"abstract":"<p>Accurate prediction of walking travel rates is central to wide-ranging applications, including modeling historical travel networks, simulating evacuation from hazards, evaluating military ground troop movements, and assessing risk to wildland firefighters. Most of the existing functions for estimating travel rates have focused on slope as the sole landscape impediment, while some have gone a step further in applying a limited set of multiplicative factors to account for broadly defined surface types (e.g., “on-path” vs. “off-path”). In this study, we introduce the Simulating Travel Rates In Diverse Environments (STRIDE) model, which accurately predicts travel rates using a suite of airborne lidar-derived metrics (slope, vegetation density, and surface roughness) that encompass a continuous spectrum of landscape structure. STRIDE enables the accurate prediction of both on- and off-path travel rates using a single function that can be applied across wide-ranging environmental settings. The model explained more than 80% of the variance in the mean travel rates from three separate field experiments, with an average predictive error less than 16%. We demonstrate the use of STRIDE to map least-cost paths, highlighting its propensity for selecting logically consistent routes and producing more accurate yet considerably greater total travel time estimates than a slope-only model.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":null,"pages":null},"PeriodicalIF":3.8000,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-024-71359-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Accurate prediction of walking travel rates is central to wide-ranging applications, including modeling historical travel networks, simulating evacuation from hazards, evaluating military ground troop movements, and assessing risk to wildland firefighters. Most of the existing functions for estimating travel rates have focused on slope as the sole landscape impediment, while some have gone a step further in applying a limited set of multiplicative factors to account for broadly defined surface types (e.g., “on-path” vs. “off-path”). In this study, we introduce the Simulating Travel Rates In Diverse Environments (STRIDE) model, which accurately predicts travel rates using a suite of airborne lidar-derived metrics (slope, vegetation density, and surface roughness) that encompass a continuous spectrum of landscape structure. STRIDE enables the accurate prediction of both on- and off-path travel rates using a single function that can be applied across wide-ranging environmental settings. The model explained more than 80% of the variance in the mean travel rates from three separate field experiments, with an average predictive error less than 16%. We demonstrate the use of STRIDE to map least-cost paths, highlighting its propensity for selecting logically consistent routes and producing more accurate yet considerably greater total travel time estimates than a slope-only model.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用机载激光雷达数据估算路径内和路径外步行率的单一、广泛适用模型
准确预测步行旅行率是广泛应用的核心,包括历史旅行网络建模、模拟危险疏散、评估军事地面部队移动以及评估野外消防员面临的风险。现有的大多数估算行走率的函数都将坡度作为唯一的地形障碍,而有些函数则更进一步,应用了一组有限的乘法因子来考虑广义的地表类型(如 "路径上 "与 "路径外")。在这项研究中,我们引入了 "多样化环境中的旅行率模拟(STRIDE)"模型,该模型可利用一套机载激光雷达衍生指标(坡度、植被密度和地表粗糙度)准确预测旅行率,这些指标涵盖了连续的地貌结构谱系。STRIDE 使用单一函数就能准确预测路径上和路径外的行进率,可应用于各种环境设置。该模型解释了三个独立野外实验中平均旅行率 80% 以上的方差,平均预测误差小于 16%。我们演示了如何使用 STRIDE 绘制最低成本路径图,突出了它在选择逻辑上一致的路线方面的优势,并得出了比纯斜坡模型更准确、更多的总行程时间估计值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
期刊最新文献
Floods of Egypt's Nile in the 21st century. Hypoxic postconditioning modulates neuroprotective glial reactivity in a 3D cortical ischemic-hypoxic injury model. A study on the changes in rice composition under reduced fertilization conditions using Raman spectroscopy technology. MethylCallR : a comprehensive analysis framework for Illumina Methylation Beadchip. Acute kidney injury predicts the risk of adverse cardio renal events and all cause death in southeast Asian people with type 2 diabetes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1