Evaluating Neural Networks Architectures for Spring Reverb Modelling

Francesco Papaleo, Xavier Lizarraga-Seijas, Frederic Font
{"title":"Evaluating Neural Networks Architectures for Spring Reverb Modelling","authors":"Francesco Papaleo, Xavier Lizarraga-Seijas, Frederic Font","doi":"arxiv-2409.04953","DOIUrl":null,"url":null,"abstract":"Reverberation is a key element in spatial audio perception, historically\nachieved with the use of analogue devices, such as plate and spring reverb, and\nin the last decades with digital signal processing techniques that have allowed\ndifferent approaches for Virtual Analogue Modelling (VAM). The\nelectromechanical functioning of the spring reverb makes it a nonlinear system\nthat is difficult to fully emulate in the digital domain with white-box\nmodelling techniques. In this study, we compare five different neural network\narchitectures, including convolutional and recurrent models, to assess their\neffectiveness in replicating the characteristics of this audio effect. The\nevaluation is conducted on two datasets at sampling rates of 16 kHz and 48 kHz.\nThis paper specifically focuses on neural audio architectures that offer\nparametric control, aiming to advance the boundaries of current black-box\nmodelling techniques in the domain of spring reverberation.","PeriodicalId":501178,"journal":{"name":"arXiv - CS - Sound","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-09-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"arXiv - CS - Sound","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/arxiv-2409.04953","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Reverberation is a key element in spatial audio perception, historically achieved with the use of analogue devices, such as plate and spring reverb, and in the last decades with digital signal processing techniques that have allowed different approaches for Virtual Analogue Modelling (VAM). The electromechanical functioning of the spring reverb makes it a nonlinear system that is difficult to fully emulate in the digital domain with white-box modelling techniques. In this study, we compare five different neural network architectures, including convolutional and recurrent models, to assess their effectiveness in replicating the characteristics of this audio effect. The evaluation is conducted on two datasets at sampling rates of 16 kHz and 48 kHz. This paper specifically focuses on neural audio architectures that offer parametric control, aiming to advance the boundaries of current black-box modelling techniques in the domain of spring reverberation.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
评估用于弹簧混响建模的神经网络架构
混响是空间音频感知中的一个关键因素,历史上曾通过使用板式混响和弹簧混响等模拟设备来实现,而在过去的几十年中,数字信号处理技术则为虚拟模拟建模(VAM)提供了不同的方法。弹簧混响的机电功能使其成为一个非线性系统,很难通过白盒建模技术在数字领域完全模拟。在这项研究中,我们比较了五种不同的神经网络架构,包括卷积模型和递归模型,以评估它们在复制这种音频效果特性方面的有效性。本文特别关注提供参数控制的神经音频架构,旨在推动当前黑盒建模技术在弹簧混响领域的发展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Explaining Deep Learning Embeddings for Speech Emotion Recognition by Predicting Interpretable Acoustic Features ESPnet-EZ: Python-only ESPnet for Easy Fine-tuning and Integration Prevailing Research Areas for Music AI in the Era of Foundation Models Egocentric Speaker Classification in Child-Adult Dyadic Interactions: From Sensing to Computational Modeling The T05 System for The VoiceMOS Challenge 2024: Transfer Learning from Deep Image Classifier to Naturalness MOS Prediction of High-Quality Synthetic Speech
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1