James Rosenberg, Vishnu Sundaresh, Jeremy Gililland, Afaf Osman, William Woolley, Claire Acevedo
{"title":"Glycemic Marker Correlation with Collagen Denaturation and Non-Enzymatic Collagen Cross-Linking in Age-Associated Bone Resistance","authors":"James Rosenberg, Vishnu Sundaresh, Jeremy Gililland, Afaf Osman, William Woolley, Claire Acevedo","doi":"10.1007/s11837-024-06744-7","DOIUrl":null,"url":null,"abstract":"<div><p>The primary clinical indicator of fracture risk among the elderly is low bone mass, yet it accounts for less than half of fractures in individuals over 50 years. Age is recognized to influence bone quality, affecting bone structure and properties. Previous research indicates that age diminishes tissue plasticity and toughness conferred by collagen, suggesting that age-related changes in the collagen environment may contribute to bone fragility. This study explores the relationship between age-related collagen impairment, specifically the accumulation of non-enzymatic collagen cross-linking and molecular collagen denaturation, and bone toughness in middle-aged and older patients (postmenopausal 50–70 years old and senile osteoporosis age > 70 years old). Additionally, it examines the influence of blood glucose and HbA1c levels, as well as body mass index (BMI), on these factors. Despite not finding any differences in fracture toughness between groups, we found a significant correlation between hemoglobin A1c and collagen integrity (collagen denaturation and non-enzymatic cross-linking).</p></div>","PeriodicalId":605,"journal":{"name":"JOM","volume":"76 10","pages":"5684 - 5691"},"PeriodicalIF":2.1000,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11837-024-06744-7.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"JOM","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11837-024-06744-7","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The primary clinical indicator of fracture risk among the elderly is low bone mass, yet it accounts for less than half of fractures in individuals over 50 years. Age is recognized to influence bone quality, affecting bone structure and properties. Previous research indicates that age diminishes tissue plasticity and toughness conferred by collagen, suggesting that age-related changes in the collagen environment may contribute to bone fragility. This study explores the relationship between age-related collagen impairment, specifically the accumulation of non-enzymatic collagen cross-linking and molecular collagen denaturation, and bone toughness in middle-aged and older patients (postmenopausal 50–70 years old and senile osteoporosis age > 70 years old). Additionally, it examines the influence of blood glucose and HbA1c levels, as well as body mass index (BMI), on these factors. Despite not finding any differences in fracture toughness between groups, we found a significant correlation between hemoglobin A1c and collagen integrity (collagen denaturation and non-enzymatic cross-linking).
期刊介绍:
JOM is a technical journal devoted to exploring the many aspects of materials science and engineering. JOM reports scholarly work that explores the state-of-the-art processing, fabrication, design, and application of metals, ceramics, plastics, composites, and other materials. In pursuing this goal, JOM strives to balance the interests of the laboratory and the marketplace by reporting academic, industrial, and government-sponsored work from around the world.