The fast Euler-Maruyama method for solving multiterm Caputo fractional stochastic delay integro-differential equations

IF 1.7 3区 数学 Q2 MATHEMATICS, APPLIED Numerical Algorithms Pub Date : 2024-09-03 DOI:10.1007/s11075-024-01925-6
Huijiao Guo, Jin Huang, Yi Yang, Xueli Zhang
{"title":"The fast Euler-Maruyama method for solving multiterm Caputo fractional stochastic delay integro-differential equations","authors":"Huijiao Guo, Jin Huang, Yi Yang, Xueli Zhang","doi":"10.1007/s11075-024-01925-6","DOIUrl":null,"url":null,"abstract":"<p>This paper studies a type of multiterm fractional stochastic delay integro-differential equations (FSDIDEs). First, the Euler-Maruyama (EM) method is developed for solving the equations, and the strong convergence order of this method is obtained, which is <span>\\(\\varvec{\\min \\left\\{ \\alpha _{l}-\\frac{1}{2}, \\alpha _{l}-\\alpha _{l-1}\\right\\} }\\)</span>. Then, a fast EM method is also presented based on the exponential-sum-approximation with trapezoid rule to cut down the computational cost of the EM method. In the end, some concrete numerical experiments are used to substantiate these theoretical results and show the effectiveness of the fast method.</p>","PeriodicalId":54709,"journal":{"name":"Numerical Algorithms","volume":"31 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Numerical Algorithms","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s11075-024-01925-6","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

This paper studies a type of multiterm fractional stochastic delay integro-differential equations (FSDIDEs). First, the Euler-Maruyama (EM) method is developed for solving the equations, and the strong convergence order of this method is obtained, which is \(\varvec{\min \left\{ \alpha _{l}-\frac{1}{2}, \alpha _{l}-\alpha _{l-1}\right\} }\). Then, a fast EM method is also presented based on the exponential-sum-approximation with trapezoid rule to cut down the computational cost of the EM method. In the end, some concrete numerical experiments are used to substantiate these theoretical results and show the effectiveness of the fast method.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求解多期卡普托分数随机延迟积分微分方程的快速欧拉-丸山方法
本文研究了一种多期分数随机延迟积分微分方程(FSDIDEs)。首先,建立了求解该方程的 Euler-Maruyama (EM) 方法,并得到了该方法的强收敛阶数,即 \(\varvec{min \left\{ \alpha _{l}-\frac{1}{2}, \alpha _{l}-\alpha _{l-1}\right\} 。}\).然后,还提出了一种基于梯形法则的指数和逼近的快速 EM 方法,以降低 EM 方法的计算成本。最后,通过一些具体的数值实验来证实这些理论结果,并展示了快速方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Numerical Algorithms
Numerical Algorithms 数学-应用数学
CiteScore
4.00
自引率
9.50%
发文量
201
审稿时长
9 months
期刊介绍: The journal Numerical Algorithms is devoted to numerical algorithms. It publishes original and review papers on all the aspects of numerical algorithms: new algorithms, theoretical results, implementation, numerical stability, complexity, parallel computing, subroutines, and applications. Papers on computer algebra related to obtaining numerical results will also be considered. It is intended to publish only high quality papers containing material not published elsewhere.
期刊最新文献
Numerical solution of nonclassical boundary value problems A posteriori error estimates for the exponential midpoint method for linear and semilinear parabolic equations Communication in multiplex transportation networks Homogeneous multigrid method for hybridizable interior penalty method A note on generalized Floater–Hormann interpolation at arbitrary distributions of nodes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1