Optimization of Copper Recovery and Fluorine Fixation from Spent Carbon Cathode Reduction Copper Slag by Response Surface Methodology

IF 2.5 3区 材料科学 Q3 GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY Journal of Sustainable Metallurgy Pub Date : 2024-09-09 DOI:10.1007/s40831-024-00919-x
Mingyang Li, Shiwei Zhou, Bo Li, Yonggang Wei, Hua Wang
{"title":"Optimization of Copper Recovery and Fluorine Fixation from Spent Carbon Cathode Reduction Copper Slag by Response Surface Methodology","authors":"Mingyang Li, Shiwei Zhou, Bo Li, Yonggang Wei, Hua Wang","doi":"10.1007/s40831-024-00919-x","DOIUrl":null,"url":null,"abstract":"<p>Spent cathode carbon (SCC) contains a considerable amount of soluble fluoride, which is classified as a hazardous emission. In this study, SCC is employed to reduce copper slag, facilitating the recovery of valuable metals, such as copper and iron, while simultaneously fixing soluble fluoride. The results reveal the substantial influences of these factors (temperature, reducing time, and CaO addition) on fluoride fixation, while the reduction temperature and time significantly affect copper recovery. The optimal results of model fitting are that the fluorine fixation is 75.6%, and the copper recovery is 97.2%. The actual fluorine fixation obtained is 75.1%, and the copper recovery is 96.2%, closely aligning with the predicted outcomes of the model. The toxic leaching test and SEM‒EDS analysis show that F<sup>−</sup> is effectively immobilized in the form of stabilized CaF<sub>2</sub>, avoiding the potential hazard of fluorine.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>\n","PeriodicalId":17160,"journal":{"name":"Journal of Sustainable Metallurgy","volume":null,"pages":null},"PeriodicalIF":2.5000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Sustainable Metallurgy","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s40831-024-00919-x","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GREEN & SUSTAINABLE SCIENCE & TECHNOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Spent cathode carbon (SCC) contains a considerable amount of soluble fluoride, which is classified as a hazardous emission. In this study, SCC is employed to reduce copper slag, facilitating the recovery of valuable metals, such as copper and iron, while simultaneously fixing soluble fluoride. The results reveal the substantial influences of these factors (temperature, reducing time, and CaO addition) on fluoride fixation, while the reduction temperature and time significantly affect copper recovery. The optimal results of model fitting are that the fluorine fixation is 75.6%, and the copper recovery is 97.2%. The actual fluorine fixation obtained is 75.1%, and the copper recovery is 96.2%, closely aligning with the predicted outcomes of the model. The toxic leaching test and SEM‒EDS analysis show that F is effectively immobilized in the form of stabilized CaF2, avoiding the potential hazard of fluorine.

Graphical Abstract

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
响应曲面法优化废碳阴极还原铜渣中铜的回收和氟的固定
废阴极碳(SCC)含有大量可溶性氟化物,被列为有害排放物。在本研究中,阴极炭被用于还原铜渣,从而在固定可溶性氟化物的同时,促进了铜和铁等有价金属的回收。结果表明,温度、还原时间和 CaO 添加量等因素对氟的固定有很大影响,而还原温度和时间则对铜的回收有显著影响。模型拟合的最佳结果是氟固定率为 75.6%,铜回收率为 97.2%。实际得到的氟固定率为 75.1%,铜回收率为 96.2%,与模型的预测结果非常接近。毒性浸出试验和 SEM-EDS 分析表明,F- 以稳定 CaF2 的形式被有效固定,避免了氟的潜在危害。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Sustainable Metallurgy
Journal of Sustainable Metallurgy Materials Science-Metals and Alloys
CiteScore
4.00
自引率
12.50%
发文量
151
期刊介绍: Journal of Sustainable Metallurgy is dedicated to presenting metallurgical processes and related research aimed at improving the sustainability of metal-producing industries, with a particular emphasis on materials recovery, reuse, and recycling. Its editorial scope encompasses new techniques, as well as optimization of existing processes, including utilization, treatment, and management of metallurgically generated residues. Articles on non-technical barriers and drivers that can affect sustainability will also be considered.
期刊最新文献
Iron Chloride Vapor Treatment for Leaching Platinum Group Metals from Spent Catalysts Environmentally Friendly Separating of Fine Copper Particles from Lithium Iron Phosphate and Graphite by Centrifugal Gravity Concentration Emerging Electrochemical Techniques for Recycling Spent Lead Paste in Lead-Acid Batteries A New Approach of Pelletizing: Use of Low-Grade Ore as a Potential Raw Material Eco-Friendly and Efficient Alumina Recovery from Coal Fly Ash by Employing the CaO as an Additive During the Vacuum Carbothermic Reduction and Alkali Dissolution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1